Exercise 1: Bohr Quantization (4 points)

In the Rutherford model of the atom electrons move on circular orbits of radius r around the nucleus. We assume in this exercise that the potential of the nucleus, in which the electron moves, is given by

$$
V(r)=V_{0} \cdot\left(\frac{r}{a}\right)^{k} .
$$

- Apply Bohr's quantization rule ($p r=n \hbar$) and calculate the possible radii r_{n} of the electron-orbits (you should obtain $r_{n}=\tilde{c} \cdot n^{-2 /(2+k)}$ with a constant \tilde{c}) and the corresponding energies $E(n)$ (energy=kinetic energy + potential energy) under the assumption that for every possible orbit the force from the potential $V(r)$ compensates the centrifugal force.
points)
- Show that for $k \gg 1$ the energies of the orbits are approximately given by $E(n) \approx$ $c \cdot n^{2}$ and that for the harmonic $(k=2)$ case $E(n)=c^{\prime} \cdot n$ holds (c and c^{\prime} are constant).
(1 points)
Exercise 2: Wavepacket with special dispersion relation (2 points)
We consider here a wavepacket with k-distribution $g(k)=\exp \left(-\frac{k^{2}}{2 \Delta^{2}}\right)$ with dispersion law $\omega(k)=-\omega_{0} \cos (\chi k)$, which holds in solid state systems in the tight-binding-regime.
- Calculate the group velocity of the wavepacket.
(0.5 points)
- Assume that $\Delta \ll 1 / \chi$ holds, i.e. the wavepacket is localized in k-space as compared to $1 / \chi$. Paying special attention to the behaviour of $\omega(k)$ in this case calculate the wavefunction $\Psi(x, t)$. You can proceed as shown in the lecture.

Exercise 3: Compton-scattering (4 points)

In this exercise we ask you to investigate the collision of an electron with momentum \vec{P} with a photon with momentum \vec{p}. You can assume that the photon moves along the x-axis in positive direction and that the electron moves in the opposite direction. After the collision the photon has momentum $\overrightarrow{p^{\prime}}$. We call the angle between $\overrightarrow{p^{\prime}}$ and the x-axis θ.

- Calculate the frequency ω^{\prime} of the photon after the collision as a function of $|\vec{p}|,|\vec{P}|, \theta$ and the frequency ω before the collision from momentum and energy conservation (relativistically!). Check that for $\vec{P}=0$ your result coincides with the result from the lecture.

