Exercise 1: Box-potential with a step (4 points)

In this exercise you shall consider a variant of the box-potential. A particle is locked in into the region $[-L, L]$ on the x-axis. The potential is vanishing in the region $[-L, 0]$ and equal to $V_{0}>0$ in the region $[0, L]$.

- Find the condition for the energies from the boundary conditions and the continuity conditions for $E>V_{0}$ and $E<V_{0}$.
- Is there a solution for $E=V_{0}$?
- Find the energy of the ground state in units of $E_{L}=\frac{\hbar^{2}}{2 m L^{2}}$ for $V_{0}=10 \cdot E_{L}$. You can proceed numerically.
(1 point)

Exercise 2: Delta-potential (2 points)

Let the potential be equal to $V(x)=g \delta(x)$. Calculate the transmission-coefficient for a particle coming in from the left and write down the condition from the conservation of the probability current. Under what conditions is there large/small transmission?

Exercise 3: Box-potential with delta-function (3 points)

Here the potential is given by a box potential with barriers at $x= \pm L$, and the potential inside the barriers is given by $g \delta(x)$.

- Write down the equation determining the eigenenergies.
- Show that the wavefunctions in the right/left region can be written as

$$
\left.A\left(\cos (k x) \pm \frac{m g}{\hbar^{2} k} \sin (k x)\right)\right)
$$

where $k^{2}=\frac{2 m E}{\hbar^{2}}$.

- Calculate the norm-factor A.

