Exercise 1: Generalized Kronig-Penny model (6 Points)

Consider the potential

$$
\left.V(x)=\frac{\hbar^{2}}{2 m} \sum_{n=-\infty}^{\infty}\left[\frac{\lambda_{1}}{2 a} \delta(x-2 n a)+\frac{\lambda_{2}}{2 a} \delta(x-(2 n-1) a)\right)\right],
$$

where $a>0, \lambda_{1}$ and λ_{2} are constants. There are regions I_{n} with boundaries $2(n-1) a$ and $(2 n-1) a$ and regions $I I_{n}$ with boundaries $(2 n-1) a$ and $2 n a$. The wavefunction in the region I_{n} can in analogy to the lecture be written as $u_{I_{n}}(x)=A_{n} \cos k[x-(2 n-1) a]+$ $B_{n} \sin k[x-(2 n-1) a]$, where $k^{2}=2 m E / \hbar^{2}$.

1. Find the condition for the allowed positive energies $E \geq 0$ for general values of $\lambda_{1} \neq \lambda_{2}$.
(a) Write down $u_{I I_{n}}(x)$ and show that

$$
\begin{align*}
& A_{n}=A_{n+1}\left[c+\frac{g_{1}}{2} s\right]-B_{n+1}\left[s+\frac{g_{1}}{2}(1-c)\right] \\
& B_{n}=A_{n+1}\left[s-\frac{g_{1}}{2}(1+c)-g_{2} c-\frac{g_{1} g_{2}}{2} s\right]+B_{n+1}\left[c+\frac{g_{1}}{2} s+g_{2} s+\frac{g_{1} g_{2}}{2}(1-c)\right], \\
& \text { where } s \equiv \sin 2 k a, c \equiv \cos 2 k a, \text { and } g_{1,2}=\frac{\lambda_{1,2}}{2 k a} . \tag{2points}
\end{align*}
$$

(b) What is the other relation of $A_{n}\left(B_{n}\right)$ with $A_{n+1}\left(B_{n+1}\right)$? Use the answer to derive the condition

$$
\left|\frac{g_{1} g_{2}}{4}+\left(1-\frac{g_{1} g_{2}}{4}\right) c+\left(\frac{g_{1}+g_{2}}{2}\right) s\right| \leq 1
$$

for the energy.
(2 points)
2. (a) Consider the case $g_{1}=g>0, g_{2}=g / 2$. Draw the regime of the allowed energies for the two cases $g=1$ and $g=10$.
(1 point)
(b) Show that for $g \rightarrow \infty$ only the energies $E_{n} \simeq \frac{\hbar^{2} \pi^{2}}{2 m a^{2}} n^{2}$ are allowed.
(1 point)
Exercise 2: Deflected particle in the harmonic oszillator (4 points)
A particle of mass m is moving in the potential $V(x)=\frac{1}{2} m \omega^{2} x^{2}$ of a harmonic oszillator with frequency ω. At time $t=0$ the particle is in the state

$$
\psi(x, 0)=\frac{1}{\sqrt{\sqrt{\pi} l}} e^{-\left(x-x_{0}\right)^{2} / 2 l^{2}} \quad \text { with } \quad l=\sqrt{\frac{\hbar}{m \omega}} .
$$

1. Express $\psi(x, 0)$ as a linear combination of eigenfunctions of the harmonic oszillator.

Hint: The formula $\int_{-\infty}^{\infty} \mathrm{d} x e^{-\left(x-x_{0}\right)^{2}} H_{n}(x)=\sqrt{\pi} 2^{n} x_{0}^{n}$ should be helpful.
2. Write down $\psi(x, t)$. How does the density $|\psi(x, t)|^{2}$ behave?

Hint: The relation $e^{-q^{2}+2 q y}=\sum_{n=0}^{\infty} \frac{q^{n}}{n!} H_{n}(y)$ should be of use.

