Exercise 1: Generalized Kronig-Penny model (6 Points)

Consider the potential

$$V(x) = \frac{\hbar^2}{2m} \sum_{n=-\infty}^{\infty} \left[\frac{\lambda_1}{2a} \delta(x - 2na) + \frac{\lambda_2}{2a} \delta(x - (2n - 1)a)) \right],$$

where a > 0, λ_1 and λ_2 are constants. There are regions I_n with boundaries 2(n-1)a and (2n-1)a and regions II_n with boundaries (2n-1)a and 2na. The wavefunction in the region I_n can in analogy to the lecture be written as $u_{I_n}(x) = A_n \cos k[x - (2n-1)a] + B_n \sin k[x - (2n-1)a]$, where $k^2 = 2mE/\hbar^2$.

- 1. Find the condition for the allowed positive energies $E \ge 0$ for general values of $\lambda_1 \ne \lambda_2$.
 - (a) Write down $u_{II_n}(x)$ and show that

$$A_{n} = A_{n+1}\left[c + \frac{g_{1}}{2}s\right] - B_{n+1}\left[s + \frac{g_{1}}{2}(1-c)\right]$$

$$B_{n} = A_{n+1}\left[s - \frac{g_{1}}{2}(1+c) - g_{2}c - \frac{g_{1}g_{2}}{2}s\right] + B_{n+1}\left[c + \frac{g_{1}}{2}s + g_{2}s + \frac{g_{1}g_{2}}{2}(1-c)\right]$$

where $s \equiv \sin 2ka, c \equiv \cos 2ka$, and $g_{1,2} = \frac{\lambda_{1,2}}{2ka}$. (2 points)

(b) What is the other relation of A_n (B_n) with A_{n+1} (B_{n+1}) ? Use the answer to derive the condition

$$\left|\frac{g_1g_2}{4} + \left(1 - \frac{g_1g_2}{4}\right)c + \left(\frac{g_1 + g_2}{2}\right)s\right| \le 1$$

for the energy.

- 2. (a) Consider the case $g_1 = g > 0$, $g_2 = g/2$. Draw the regime of the allowed energies for the two cases g = 1 and g = 10. (1 point)
 - (b) Show that for $g \to \infty$ only the energies $E_n \simeq \frac{\hbar^2 \pi^2}{2ma^2} n^2$ are allowed.

(1 point)

(2 points)

Exercise 2: Deflected particle in the harmonic oszillator (4 points)

A particle of mass m is moving in the potential $V(x) = \frac{1}{2}m\omega^2 x^2$ of a harmonic oszillator with frequency ω . At time t = 0 the particle is in the state

$$\psi(x,0) = \frac{1}{\sqrt{\sqrt{\pi}l}} e^{-(x-x_0)^2/2l^2} \quad \text{with} \quad l = \sqrt{\frac{\hbar}{m\omega}}.$$

- 1. Express $\psi(x, 0)$ as a linear combination of eigenfunctions of the harmonic oszillator. Hint: The formula $\int_{-\infty}^{\infty} dx \ e^{-(x-x_0)^2} H_n(x) = \sqrt{\pi} 2^n x_0^n$ should be helpful. (2 points)
- 2. Write down $\psi(x,t)$. How does the density $|\psi(x,t)|^2$ behave? Hint: The relation $e^{-q^2+2qy} = \sum_{n=0}^{\infty} \frac{q^n}{n!} H_n(y)$ should be of use. (2 points)