Exercise 1: Deflected particle in the harmonic oscillator (3 Points)

A particle of mass m is moving in an one-dimensional harmonic oscillator with frequency ω. At $t=0$ the state of the system is given by

$$
|\Psi(t=0)\rangle=e^{-i \hat{p} b / \hbar}|0\rangle,
$$

where b is a constant and $|0\rangle$ is the ground-state of the harmonic oscillator.

1. Using the Heisenberg picture, calculate the expected value $\langle\hat{x}\rangle(t)$ for $t \geq 0$.
2. Consider $|\Phi\rangle=e^{-i \hat{p} b / \hbar}|\Psi\rangle$, and show that $\Phi(x+b)=\Psi(x)$ holds.

Note: This is why the operator $e^{-i \hat{p} b / \hbar}|\Psi\rangle=\hat{T}_{b}$ is the so-called translation operator (by a length b).
Hint: The Baker-Hausdorff lemma will be helpful.

Exercise 2: Correlation function (2 points)

Consider a function known as the correlation function, which is defined by

$$
c(t)=\langle\hat{x}(t) \hat{x}(0)\rangle,
$$

where $\hat{x}(t)$ is the position operator in the Heisenberg picture. Evaluate $c(t)$ explicitly for the ground-state of a one-dimensional harmonic oscillator.

Exercise 3: Schwinger-Boson representation (3 points)

Consider two independent harmonic oscillators, whit Hamiltonian operators \hat{H}_{A} and \hat{H}_{B}, and creation and annihilation operators ($\hat{a}, \hat{a}^{\dagger}$) and $\left(\hat{b}, \hat{b}^{\dagger}\right)$ respectively. The ladder operators satisfy the following commutation relations: $[\hat{a}, \hat{b}]=\left[\hat{a}^{\dagger}, \hat{b}^{\dagger}\right]=\left[\hat{a}, \hat{b}^{\dagger}\right]=\left[\hat{a}^{\dagger}, \hat{b}\right]=0$.
Let's to consider the operators $\hat{J}_{+}, \hat{J}_{-}, \hat{J}_{z}$ defined as:

$$
\hat{J}_{+}=\hbar \hat{b}^{\dagger} \hat{a}, \quad \hat{J}_{-}=\hbar \hat{a}^{\dagger} \hat{b} \quad \text { where } \quad \hat{J}_{ \pm}=\hat{J}_{x} \pm i \hat{J}_{y}, \quad \hat{J}_{z}=\frac{\hbar}{2}\left(\hat{b}^{\dagger} \hat{b}-\hat{a}^{\dagger} \hat{a}\right)
$$

(this is the so-called Schwinger-Boson representation of the angular momentum operators).

1. Show that the operators $\hat{J}_{ \pm}, \hat{J}_{z}$ fulfill the same commutation relations of the angular momentum operators, to do so, check the commutators $\left[\hat{J}_{z}, \hat{J}_{ \pm}\right],\left[\hat{J}^{2}, \hat{J}_{z}\right],\left[\hat{J}_{+}, \hat{J}_{-}\right]$.
2. Consider the states $\left|n_{A}, n_{B}\right\rangle$ such that
$\hat{H}_{A}\left|n_{A}, n_{B}\right\rangle=\hbar \omega_{A}\left(n_{A}+\frac{1}{2}\right)\left|n_{A}, n_{B}\right\rangle \quad$ and $\quad \hat{H}_{B}\left|n_{A}, n_{B}\right\rangle=\hbar \omega_{B}\left(n_{B}+\frac{1}{2}\right)\left|n_{A}, n_{B}\right\rangle$.
Show that $\left|n_{A}, n_{B}\right\rangle$ are eigenstates of \hat{J}_{z} and \hat{J}^{2}, where $\hat{J}^{2}=\hat{J}_{x}^{2}+\hat{J}_{y}^{2}+\hat{J}_{z}^{2}$. Calculate the corresponding eigenvalues, what plays now the role of the quantum numbers l and m ?

Exercise 4: Heisenberg equation of motion (2 points)
Consider the Hamiltonian

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+V_{0} \cos ^{2} q \hat{x},
$$

where m, V_{0} and q are constants. Obtain the Heisenberg equation for the operators \hat{p} and \hat{x} and the equation of motion $\frac{d^{2} \hat{x}}{d t^{2}}=$? (without solving it).

