Exercise 9-1: Pauli-matrices (2.5 points)

Consider the operator

$$
\hat{R}_{\vec{a}}(\theta)=\exp \left(-\frac{i}{2} \theta \hat{\vec{\sigma}} \cdot \hat{\vec{a}}\right) \quad \text { with } \quad \hat{\vec{\sigma}}=\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right)
$$

where $\hat{\sigma}_{x, y, z}$ are the Pauli-matrices. In this exercise you are supposed to investigate this operator for a vector \vec{a} in the $x-y$ plane, $\vec{a}=(-\sin \phi, \cos \phi, 0)$.

1. Write down the operator $\hat{R}_{\vec{a}}(\theta)$ in the matrix representation of the \hat{S}_{z}-basis. (1 point) Useful questions: how is the function of an operator defined? What is the Taylor-expansion of the sine and the cosine?
2. Let $\hat{\sigma}_{z}|+\rangle=|+\rangle$. Calculate $\left|\psi^{\prime}\right\rangle=\hat{R}_{\vec{a}}(\theta)|+\rangle$.
3. Compare $\langle+| \hat{\vec{\sigma}}|+\rangle$ with $\left\langle\psi^{\prime}\right| \hat{\vec{\sigma}}\left|\psi^{\prime}\right\rangle$. What is the effect of the operator $\hat{R}_{\vec{a}}(\theta)$? Support your answer with a sketch.
(1 point)

Exercise 9-2: Double Stern-Gerlach experiment (2 Punkte)

A spin- $\frac{1}{2}$ particle is in the state $|\psi\rangle=\frac{1}{\sqrt{2}}(|+\rangle+|-\rangle)$, where $| \pm\rangle$ are the eigenstates of the z-component of the spin operator \hat{S}_{z}. The particle is first flying through a Stern-Gerlach apparatus in the z-direction, and the part which is deflected in the positive z-direction is then flying through a second Stern-Gerlach apparatus in the direction \hat{n}, which is parametrized by the polar angles θ and ϕ.

Obtain the probabilities for detecting the particle in the detectors $D_{-}, D_{+}^{\hat{n}}$, and $D_{-}^{\hat{n}}$.
Exercise 9-3: Magnetic spinning top I (3 points)
The Hamilton operator of a magnetic spinning top in a magnetic field \vec{B} is given by

$$
\hat{H}=\frac{1}{2 \theta_{1}}\left(\hat{L}_{x}^{2}+\hat{L}_{y}^{2}\right)+\frac{1}{2 \theta_{2}} \hat{L}_{z}^{2}-g \mu \vec{B} \cdot \hat{\vec{L}} .
$$

We assume that $\theta_{1,2}>0$ holds as well as $\vec{B}=B \hat{z}$ with $B>0$ and $g \mu>0$.

1. Obtain the eigenstates and eigenenergies of \hat{H}.
2. Find the groundstate depending on $b \equiv \frac{2 g \mu B \theta_{1}}{\hbar}$ and $R \equiv \frac{\theta_{1}}{\theta_{2}}$.
3. For which value of B has the ground state the angular momentum $l=1$? (0.5 points)
4. Under which condition is the groundstate energy degenerate?

Exercise 9-4: Magnetic spinning top II (2.5 points)
This exercise concerns again the Hamilton operator of the magnetic spinning top. Here the magnetic field is given by $\vec{B}=B(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)$.

1. Write down the Heisenberg-equations for the operators \hat{L}_{x}, \hat{L}_{y}, and \hat{L}_{z}.
(1.5 points)
2. Find the solution of the equations $\left\langle\hat{L}_{x}\right\rangle(t)$ and $\left\langle\hat{L}_{y}\right\rangle(t)$ for $\theta=0$ and $\theta_{1}=\theta_{2}$ depending on the initial values $\left\langle\hat{L}_{x}\right\rangle(0)$ and $\left\langle\hat{L}_{y}\right\rangle(0)$.
(1 point)
