Exercise 1: Composition of 2 spins (2 Points)

The Hamiltonian for a system of two spins is given by

$$
\hat{H}=A+\frac{B}{\hbar^{2}} \hat{\vec{S}}_{1} \cdot \hat{\vec{S}}_{2}+\frac{C}{\hbar}\left(\hat{S}_{1 z}+\hat{S}_{2 z}\right),
$$

where $A, B$ and $C$ are constants. Calculate the eigenvalues and eigenstates of the Hamiltonian assuming that:

- The two particles have spin $1 / 2$.
- One particle has spin $1 / 2$ and the other spin 1 .

Exercise 2: Time evolution of spins (3.5 Points)

Consider two particles. Particle 1 has spin 1, whereas particle 2 has spin $1 / 2$. At time $t=0$, the state of the two-particle system is

$$
\Psi(0)=a|1,-1 / 2\rangle+b|0,1 / 2\rangle,
$$

where $a$ and $b$ are constants (real numbers). We use the notation $\left|m_{1}, m_{2}\right\rangle \equiv \mid s_{1}=$ $\left.1, m_{1} ; s_{2}=1 / 2 ; m_{2}\right\rangle$. We assume that the dynamics of the two-particle system is provided by the Hamiltonian:

$$
\hat{H}=\frac{\alpha}{\hbar} \hat{\vec{S}}_{1} \cdot \hat{\vec{S}}_{2}
$$

where $\alpha$ is a constant. Calculate after a given time $t$ the state $|\Psi(t)\rangle$, and the expected value $\left\langle\hat{S}_{1 z}\right\rangle$.

## Exercise 3: Composition of three spins (4.5 Points)

Consider three particles of spin $1 / 2$. Let $\hat{\vec{J}}=\hat{\vec{S}}_{1}+\hat{\vec{S}}_{2}$, and $\hat{\vec{S}}=\hat{\vec{J}}+\hat{\vec{S}}_{3}$. obtain the states which are simultaneously eigenstates of $\left\{\hat{S}^{2}, \hat{S}_{z}, \hat{J}^{2}, \hat{S}_{3}^{2}, \hat{S}_{2}^{2}, \hat{S}_{1}^{2}\right\}$, and the corresponding eigenvalues. Express the eigenstates as a linear combination of the eigenstates of the basis $\left\{\hat{S}_{1}^{2}, \hat{S}_{1 z}, \hat{S}_{2}^{2}, \hat{S}_{2 z}, \hat{S}_{3}^{2}, \hat{S}_{3 z}\right\}$. (Hint: First compose the first two spins, and then compose with the third one.)

[^0]
[^0]:    Hint: In these exercises you will need at some point the Clebsch-Gordan coefficients for the composition of angular momenta. You can find tables of Clebsch-Gordan coefficients in internet. E.g. http://en.wikipedia.org/wiki/Table_of_ClebschGordan_coefficients. You can find a calculator (java aplet) of Clebsch-Gordan coefficients e.g. in http://www.gleet.org.uk/cleb/cgjava.html.

