Exercise 1: Potential box (3 Points)

Consider a particle initially in the ground state of a box potential with walls at $x= \pm a$. Suddenly (at $t=0$) the walls of the box are displaced to $x= \pm b$ where $b>a$.

- What is the probability to find the particle in an odd state of the new box? Can you discuss why?
- What is the probability to find the atom in the even state $u_{n}^{(+)}(x)$ of the new box?
- Using the expression of the wavefunction in terms of the new eigenfunctions, write down the wavefunction after a given time t.

Exercise 2: Potential box II (2 Points)

Suppose again a particle in the ground state of a box with walls in $x=-a$ and $x=a$. Suppose that we move the walls like in the first exercise but now to $\pm \infty$. What are the eigenfunctions of the Hamiltonian after moving the walls to $\pm \infty$? What is the probability to find a particle with momentum in the range from p to $p+d p$? What happens with this probability at a later time $t>0$?

Exercise 3: Uncertainty principle in the box potential (2 Points)

Consider a box potential with walls at $x= \pm a$. Calculate for the state the n-th even state $u_{n}^{(+)},\langle\hat{p}\rangle,\left\langle\hat{p}^{2}\right\rangle,\langle\hat{x}\rangle,\left\langle\hat{x}^{2}\right\rangle$, Calculate $\Delta x \Delta p$ and check the uncertainty principle $\Delta x \Delta p>\hbar / 2$.

Exercise 4: Box potential with periodic boundary conditions (3 Points)

Consider again a box potential with walls at $x=0$ and $x=L$. Consider the following, so-called periodic, boundary conditions: $\psi(0)=\psi(L)$ and $\psi^{\prime}(0)=\psi^{\prime}(L)$, where ψ^{\prime} denotes $d \psi / d x$. Calculate the eigen-functions and the eigen-energies, and compare them to the case we have seen during the theory class. Find the right combinations of the wavefunctions which are symmetric/antisymmetric with respect to the transformation $\psi(x-L / 2) \leftrightarrow$ $\psi(L / 2-x)$.

