Aufgabe 1: Transmission durch eine Potentialbarriere (3 Punkte)

- Betrachten Sie ein Potential V(x) = 0 für x < 0, und $V(x) = V_0 Fx$ für x > 0, wobei V_0 und F positive Konstanten sind. Betrachten Sie ein von links nach rechts laufendes Teilchen mit der Energie $0 < E < V_0$. Berechnen Sie die Tunnelwahrscheinlichkeit $|T|^2$ des Teilchens durch die Barriere.
- Betrachten Sie das gleiche Problem, nun aber mit einem Potential der Form V(x) = 0 für x < 0, und $V(x) = V_0 \alpha x^2$ für x > 0; $\alpha > 0$.

Aufgabe 2: Transmission durch eine Deltafunktion (3 Punkte)

Betrachten Sie ein Potential $V(x) = g\delta(x)$, wobei g > 0 eine Konstante ist. Berechnen Sie die Transmissionswahrscheinlichkeit $|T|^2$ fü ein Teilchen durch die Barriere.

Aufgabe 3: Doppel-Delta-Potential (4 Punkte)

Betrachten Sie ein Potential der Form $V(x)=g(\delta(x)+\delta(x-a))$, wobei g>0 und a>0 Konstanten sind. Bestimmen Sie den Transmissionskoeffizienten eines Teilchens durch dieses Potential. Stellen Sie Ihr Ergebnis grafisch dar. Sie sollten erkennen, dass bei bestimmten Energien die Transmission $|T|^2$ ungewöhnlich hoch ist (resonantes Tunneln). Was sind diese Energien?