Exercise 1: Modified Kronig-Penney potential (5 Points)

Consider the potential $V(x)=g \sum_{n=-\infty}^{\infty} \delta(x-n a)-g \sum_{n=-\infty}^{\infty} \delta(x-(n-1 / 2) a)$, where $g>0$, and $a>0$ are constants. Consider positive energies $E>0$, and obtain the condition for the allowed energy bands. (Hint: Pay a close attention to what is the periodicity of the potential. If one calls R_{n} the region $(n-1) a<x<n a$, the wavefunctions $\psi_{n}(x)$ in R_{n} and $\psi_{n+1}(x)$ in R_{n+1} are related by $\psi_{n+1}(x)=\psi_{n}(x+a) e^{i \phi}$, where ϕ is a phase).

Exercise 2: Harmonic oscillator wavefunctions (3 Points)

Consider a particle of mass m described by a Gaussian wavefunction of the form:

$$
\psi(x)=\frac{1}{\sqrt{\sqrt{\pi} l_{0}}} e^{-\frac{1}{2}\left(\frac{x}{l_{0}}\right)^{2}}
$$

Assume an harmonic oscillator centered in $x=0$ with a frequency ω, such that the oscillator length is $l=\sqrt{\hbar / m \omega}>l_{0}$. What is the probability to find the particle with an energy $E_{n}=\hbar \omega(n+1 / 2)$? (Hint: You will need the following integral $\int_{-\infty}^{\infty} d y e^{-y^{2} / 2 u} H_{n}(y)=$ $(2 \pi u)^{1 / 2}(1-2 u)^{n / 2} H_{n}(0)$, where $H_{n}(y)$ are the Hermite polynomials, and $H_{2 n^{\prime}}(0)=(-1)^{n^{\prime}} 2^{n^{\prime}}\left(2 n^{\prime}-\right.$ 1)!! and $H_{2 n^{\prime}+1}(0)=0$, where $\left(2 n^{\prime}-1\right)!!=1 \cdot 3 \cdot 5 \cdot \ldots\left(2 n^{\prime}-1\right)$.)

Exercise 3: Width of the harmonic oscillator wavefunctions (2 Points)
Calculate the variance $\Delta x=\sqrt{\left\langle x^{2}\right\rangle-\langle x\rangle^{2}}$ for the n-th level of a 1D harmonic oscillator centered in $x=0$. (Hint: You will need the following integral $\int_{-\infty}^{\infty} d y e^{-y^{2}} H_{n}(y)^{2} y^{2}=$ $\left.2^{n} n!\sqrt{\pi}(n+1 / 2)\right)$.

