Exercise 1: Periodic potential (2 Points)

Consider the following potential: $V(x) = g \sum_{n=-\infty}^{\infty} \delta(x - (na + c)) + U(x)$, where U(x) = 0, except for the regions na - b < x < na, where it is $U(x) = V_0$. Consider a particle with energy $E < V_0$. Express the wavefunctions in the different regions of the potential, and write down (without solving them) the equations that these wavefunctions must fulfill.

Exercise 2: Creation and destruction operators (3 Points)

Consider the *n*-th state $(|n\rangle)$ of the harmonic oscillator

$$|n\rangle = \frac{1}{\sqrt{n!}} (\hat{a}^{\dagger})^n |0\rangle$$

where $|0\rangle$ is the ground-state of the harmonic oscillator. We employ a slightly different definition for the creation and annihilation operators as that of the theory class, which is indeed the more standard way of defining these operators:

$$\begin{split} \hat{a} &= \sqrt{\frac{m\omega}{2\hbar}} \hat{x} + i \frac{\hat{p}}{\sqrt{2m\hbar\omega}}, \\ \hat{a}^{\dagger} &= \sqrt{\frac{m\omega}{2\hbar}} \hat{x} - i \frac{\hat{p}}{\sqrt{2m\hbar\omega}}, \end{split}$$

Note that compared with the theory class $\hat{a} = \hat{A}/\sqrt{\hbar}$, and $\hat{a}^{\dagger} = \hat{A}^{\dagger}/\sqrt{\hbar}$, and hence $[\hat{a}, \hat{a}^{\dagger}] = 1$, and the harmonic oscillator Hamiltonian is of the form $\hat{H} = \hbar\omega(\hat{a}^{\dagger}\hat{a} + 1/2)$.

- Show that $\hat{a}^{\dagger}|n\rangle = \sqrt{n+1}|n+1\rangle$.
- Show that $\hat{a}|n\rangle = \sqrt{n}|n-1\rangle$. In order to show this, you will need the commutation relation of \hat{a} and \hat{a}^{\dagger} .
- Calculate $\langle n | \hat{x} | m \rangle$ showing that it is zero except when $n = m \pm 1$.

Exercise 3: Heisenberg picture (3 Points)

Consider the following Hamiltonian Operator:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m}{2} \left(\omega_1^2 \hat{x}^2 + \omega_2 \hat{x} + \epsilon \right).$$

- Using the commutation relation of the position operator \hat{x} and the momentum operator \hat{p} , obtain the Heisenberg equations for $\frac{d}{dt}\hat{x}$, and $\frac{d}{dt}\hat{p}$.
- Solve the Heisenberg equations to obtain the time-dependence of the operator $\hat{x}(t)$.

• Express the Hamiltonian operator as a function of the creation and annihilation operators (using the definiton of exercise 2). Write down (without solving it) the Heisenberg equation for $\frac{d}{dt}\hat{a}$.

Exercise 4: Heisenberg picture II (2 Points)

- Using the definition of commutator calculate the commutator $[\hat{p}, \frac{1}{x^2}]$.
- Consider the Hamiltonian:

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m}{2}\omega^2 x^2 + \frac{A}{x^2},$$

where A is a constant. Write down (without solving them) the Heisenberg equations for $\frac{d}{dt}\hat{x}$, and $\frac{d}{dt}\hat{p}$.