Exercise 1: Three-dimensional potential box (2 Points)

- Calculate the ground state energy and the corresponding normalized eigenfunction of a three-dimensional box potential characterized by $V(x, y, z)=0$ for $-l_{x} \leq x \leq l_{x}$ and $-l_{y} \leq y \leq l_{y}$ and $-l_{z} \leq z \leq l_{z}$, and ∞ otherwise.
- Suppose that $l_{x}=l_{y}=l, l_{z}=\alpha l$. Obtain the first excited state and the corresponding eigenenergy.

Exercise 2: Two-dimensional Schrödinger equation (4 Points)

Consider the two-dimensional time-independent Schrödinger equation in the plane $x y$. Assume a potential $V(x, y)=V(r)$, where $r^{2}=x^{2}+y^{2}$.

- Express the two-dimensional Schrödinger equation in polar coordinates ($x=r \cos \phi$, $y=r \sin \phi$).
- Using the method of separation of variables, show that the eigenfunctions of the Hamiltonian can be written as $\Psi(\vec{r})=R(r) e^{i m \phi}$.
- Obtain the resulting equation for the radial function $R(r)$. What is the form of the centrifugal barrier in the two-dimensional radial equation?

Exercise 3: Spherical Harmonics (4 Points)

A particle in a three-dimensional central field $V(r)$ is described by the wavefunction

$$
\Psi(x, y, z)=C(x y+y z+z x) e^{-\alpha r^{2}}
$$

where C and α are constants.

- Express the wavefunction in function of the spherical harmonics.
- Find out which values of the quantum numbers l and m can be obtained in a measurement of \hat{L}^{2} and \hat{L}_{z} for this particle, and with which probability.
- Suppose that we have 50% of probability to find the particle in the state $l=1$, $m=-1$, and 50% probability to find the particle in the state $l=2, m=2$. Express the wavefunction that represents the particle using Cartesian coordinates.

