Exercise 1: Free electron in a magnetic field (4.5 Points)
Consider a free electron (so not bound to an atom) in a magnetic field $\vec{B}=B \vec{u}_{z}$. The free electron is on the $x y$-plane. Do not consider the z-dimension (i.e. consider a 2D motion of the electron).

- Use the Hamiltonian that we obtain in the theory class, but now do not neglect the term dependent on B^{2} ("third term" in the theory class). Change from (x, y) coordinates to polar coordinates (r, ϕ), and write the time-independent Schrödinger equation for the eigenfunction $\psi(r, \phi)$ with eigenenergy E.
- Use the method of separation of variables $\psi(r, \phi)=R(r) e^{i m \phi}$ (as you did for a similar 2D problem in Sheet 7). After making a convenient change of variables $r \rightarrow \eta$, obtain that the radial equation for $R(\eta)$ can be written in the form:

$$
\frac{d^{2}}{d \eta^{2}} R+\frac{1}{\eta} \frac{d}{d \eta} R-\frac{m^{2}}{\eta^{2}} R-\eta^{2} R+\lambda R
$$

where

$$
\lambda=\frac{4 \mu c E}{e B \hbar}-2 m
$$

- Use the expression $R(\eta)=\eta^{|m|} e^{-\eta^{2} / 2} G(\eta)$, and show that $G(\eta)=L_{n_{r}}^{|m|}\left(\eta^{2}\right)$, where $n_{r}=0,1,2, \ldots$. Find n_{r} as a function of λ and m, and from that obtain that the eigenenergies are of the form

$$
E=\frac{e B \hbar}{2 \mu c}\left(2 n_{r}+1+|m|+m\right)
$$

Exercise 2: Spin-1/2 particles (2.0 Points)

Consider a spin- $1 / 2$ system (e.g. an electron, like in the theory class).

- Calculate the eigenstates and eigenvalues of $\hat{S}_{x}+\hat{S}_{y}$.
- Suppose that you measure $\hat{S}_{x}+\hat{S}_{y}$ and you obtain that the system is in the eigenstate with maximal eigenvalue. Suppose that after that you measure \hat{S}_{z}. What is the probability to obtain as a result of the measurement $\hbar / 2$?

Exercise 3: Spin dynamics in the Heisenberg picture. (3.5 Points)

A spin $1 / 2$ particle (e.g. an electron) is under the influence of a magnetic field \vec{B}. Consider that the electron cannot move. Then, as we show in the theory class, the Hamiltonian describing the electron is of the form:

$$
\hat{H}=\frac{e g}{2 m c} \hat{S} \cdot \vec{B},
$$

where $\hat{\vec{S}}=\left\{\hat{S}_{x}, \hat{S}_{y}, \hat{S}_{z}\right\}$, and $g \simeq 2$.

- Obtain the Heisenberg equation for the dynamics of the operator $\hat{\vec{S}}(t)$.
- Assuming $\vec{B}=(0,0, B)$ calculate $\hat{S}_{x}(t)$ and $\hat{S}_{y}(t)$, as a function of $\hat{S}_{x}(0)$ and $\hat{S}_{y}(0)$.

