Exercise 1: The Baker-Hausdorff formula

Consider two operators \hat{A} and \hat{B} that satisfy $[\hat{A},[\hat{A}, \hat{B}]]=[\hat{B},[\hat{A}, \hat{B}]]=0$.

- Show first that $\left[\hat{B}, \hat{A}^{n}\right]=-n \hat{A}^{n-1}[\hat{A}, \hat{B}]$.
- Consider $\hat{f}(x)=e^{\hat{A} x} e^{\hat{B} x}$. Show that

$$
\frac{d \hat{f}(x)}{d x}=\left(\hat{A}+e^{\hat{A} x} \hat{B} e^{-\hat{A} x}\right) \hat{f}(x)
$$

- Using the result of the first point, show that the expression obtained in the second point can be expressed as

$$
\frac{d \hat{f}(x)}{d x}=(\hat{A}+\hat{B}+[\hat{A}, \hat{B}] x) \hat{f}(x)
$$

- Setting $\hat{f}(x)=e^{\hat{O}(x)}$, find the operator $\hat{O}(x)$, using the fact that $\hat{f}(0)=1$.
- Once you have found $\hat{O}(x)$, set $x=1$, and check that you obtain the Baker-Hausdorff formula that we have employed in the theory class.

Exercise 2: Squeezed states

Consider the squeezed state $|\alpha, \epsilon\rangle=\hat{D}(\alpha) \hat{S}(\epsilon)|0\rangle$. Let $\epsilon=r e^{i \phi}$, where r is the squeezing factor. Using the properties of the displacement operator $\hat{D}(\alpha)$ and the squeezing operator $\hat{D}(\epsilon)$ that we have seen in the class, show that:

- $\langle\alpha, \epsilon| \hat{a}|\alpha, \epsilon\rangle=\alpha$
- $\langle\alpha, \epsilon| \hat{a}^{\dagger}|\alpha, \epsilon\rangle=\alpha^{*}$
- $\langle\alpha, \epsilon| \hat{a}^{2}|\alpha, \epsilon\rangle=\alpha^{2}-e^{2 i \phi} \sinh r \cosh r$
- $\langle\alpha, \epsilon| \hat{a}^{\dagger 2}|\alpha, \epsilon\rangle=\alpha^{* 2}-e^{-2 i \phi} \sinh r \cosh r$

Exercise 3: Number average and number variance in squeezed states
Consider the squeezed state $|\alpha, \epsilon\rangle$. Let $\hat{n}=\hat{a}^{\dagger} \hat{a}$ the number of operator.

- Show that the average number of photons is $\langle\alpha, \epsilon| \hat{n}|\alpha, \epsilon\rangle=|\alpha|^{2}+\sinh ^{2} r$
- Show that the squared variance $(\Delta n)^{2}=\left\langle\hat{n}^{2}\right\rangle-\langle\hat{n}\rangle^{2}$ is $(\Delta n)^{2}=\left|\alpha \cosh r-\alpha^{*} e^{-2 i \phi} \sinh r\right|^{2}+$ $2 \cosh ^{2} r \sinh ^{2} r$.
- Consider the case $|\alpha|^{2}$ very large. Show that $\Delta n \simeq \sqrt{\langle n\rangle} e^{-r}$, and hence that if $r>0$ one has a sub-Poissonian distribution, and for $r<0$ a super-Poissonian distribution.

