Sheet 2 (to be discussed on 05.11 .07 during the exercise class)

Exercise 1: The Λ system

Let us consider a 3 level atom with an electronic configuration as in the figure. This sort of system is called (for obvious reasons) a Λ system.

The level $|j\rangle$ has an energy E_{j}, with $j=1,2,3$. The levels $|1\rangle$ and $|3\rangle$ are connected by a laser with frequency ω_{A}, whereas the levels $|2\rangle$ and $|3\rangle$ are connected by a laser with frequency ω_{B}. The coupling constant for the coupling $|j\rangle \leftrightarrow|3\rangle$ is $g_{j 3}$ with $j=1,2$ (assume both coupling constants as real).

- Write the Hamiltonian of the system in rotating wave approximation. Note that now the system is formed by the three electronic levels and the two electromagnetic modes.
- Show that the states $\left\{\left|n_{A}, n_{B}, 3\right\rangle,\left|n_{A}+1, n_{B}, 1\right\rangle,\left|n_{A}, n_{B}+1,2\right\rangle\right\}$ form a closed family of states, i.e. that when we apply the Hamiltonian to any one of them we get a combination of other members of the family. The notation $\left|n_{A}, n_{B}, j\right\rangle$ means that the state has n_{A} photons in the mode A, n_{B} photons in the mode B, and the electron is in the level $|j\rangle$.
- Let $|\psi(t)\rangle=\psi_{3}(t)\left|n_{A}, n_{B}, 3\right\rangle+\psi_{1}(t)\left|n_{A}+1, n_{B}, 1\right\rangle+\psi_{2}(t)\left|n_{A}, n_{B}+1,2\right\rangle$. Write the equations for $\psi_{j}(t)$, with $j=1,2,3$. Use the definition of the detunings $\Delta_{13}=$ $\omega_{A}-\left(E_{3}-E_{1}\right) / \hbar$, and $\Delta_{23}=\omega_{B}-\left(E_{3}-E_{2}\right) / \hbar$.

Exercise 2: The dark state

Consider the system of the previous exercise, with $\Delta_{13}=\Delta_{23}=\Delta$. Let $\Omega_{1}=$ $g_{13} \sqrt{n_{A}+1}, \Omega_{2}=g_{23} \sqrt{n_{B}+1}$.

- Show that the state

$$
|D\rangle=\frac{\Omega_{2}\left|n_{A}+1, n_{B}, 1\right\rangle-\Omega_{1}\left|n_{A}, n_{B}+1,2\right\rangle}{\sqrt{\Omega_{1}^{2}+\Omega_{2}^{2}}}
$$

decouples from the rest of the states, i.e. there is no transfer between $|D\rangle$ and the rest of the states. This state is an example of a so-called dark state.

- Calculate the eigenstates and eigenenergies of the Hamiltonian of the Λ system. Note that the dark state is itself an eigenstate.

Exercise 3: Time evolution of the Λ system
Consider the Λ system with the assumptions of exercise 2 .

- Obtain the state of the system $|\psi(t)\rangle$ for a given initial state $|\psi(0)\rangle$.
- Let $\psi(0)=\left|n_{A}+1, n_{B}, 1\right\rangle$. What is the probability to find the atom after some time t in the electronic state $|j\rangle$, with $j=1,2,3$?

