Exercise 1: Symmetrically-ordered characteristic function for a squeezed state

Let us consider a squeezed state $|\alpha, r\rangle$, where α is a complex number, but r is real. The goal is to find the corresponding form of the symmetrically ordered characteristic function

$$
\chi(\eta)=\operatorname{Tr}\left\{\hat{\rho} e^{\eta \hat{a}^{\dagger}-\eta^{*} \hat{a}}\right\}=\langle\alpha, r| e^{\eta \hat{a}^{\dagger}-\eta^{*} \hat{a}}|\alpha, r\rangle .
$$

Remember that $|\alpha, r\rangle=\hat{D}(\alpha) \hat{S}(r)|0\rangle$. In order to find $\chi(\eta)$ you will have to follow the following steps:

- First use the Baker-Hausdorff formula to show that

$$
e^{\eta \hat{a}^{\dagger}-\eta^{*} \hat{a}}=e^{\eta \hat{a}^{\dagger}} e^{-\eta^{*} \hat{a}} e^{-|\eta|^{2} / 2}
$$

- Show that

$$
\hat{D}(\alpha)^{\dagger} e^{\eta \hat{a}^{\dagger}} e^{\eta^{*} \hat{a}} \hat{D}(\alpha)=e^{\eta\left(\hat{a}^{\dagger}+\alpha^{*}\right)} e^{-\eta^{*}(\hat{a}+\alpha)}
$$

- Show then that

$$
\hat{S}(r)^{\dagger} e^{\eta \hat{a}^{\dagger}} e^{-\eta^{*} \hat{a}} \hat{S}(r)=e^{\eta\left(\cosh r \hat{a}^{\dagger}-\sinh r \hat{a}\right)} e^{-\eta^{*}\left(\cosh r \hat{a}-\sinh r \hat{a}^{\dagger}\right)}
$$

- Using again the Baker-Hausdorff formula, show that

$$
\begin{gathered}
e^{\eta\left(\cosh r \hat{a}^{\dagger}-\sinh r \hat{a}\right)}=e^{\eta \cosh r \hat{a}^{\dagger}} e^{-\eta \sinh r \hat{a}} e^{-\frac{1}{2} \sinh r \cosh r \eta^{2}}, \\
e^{-\eta^{*}\left(\cosh r \hat{a}^{\dagger}-\sinh r \hat{a}\right)}=e^{\eta^{*} \sinh r \hat{a}} e^{-\eta^{*} \cosh r \hat{a}} e^{-\frac{1}{2} \sinh r \cosh r \eta^{* 2}},
\end{gathered}
$$

- Note that $e^{-\eta^{*} \cosh r \hat{a}}|0\rangle=|0\rangle$, and $\langle 0| e^{\eta \sinh r \hat{a}^{\dagger}}=\langle 0|$.
- Use again the Baker Hausdorff formula to show that:

$$
e^{-\eta \sinh r \hat{a}} e^{\eta^{*} \sinh r \hat{a}^{\dagger}}=e^{\eta^{*} \sinh r \hat{a}^{\dagger}} e^{-\eta \sinh r \hat{a}} e^{-|\eta|^{2} \sinh ^{2} r}
$$

- Now you should be able to calculate easily

$$
\langle 0| e^{-\eta \sinh r \hat{a}} e^{\eta^{*} \sinh r \hat{a}^{\dagger}}|0\rangle
$$

If you did all the calculation correctly you should retrieve:

$$
\chi(\eta)=e^{\eta \alpha^{*}-\eta^{*} \alpha-|\eta|^{2} / 2-|\eta|^{2} \sinh ^{2} r-\frac{1}{2} \sinh r \cosh r\left(\eta^{2}+\eta^{* 2}\right)}
$$

Exercise 2: Wigner function of a squeezed state
We consider the state $|\alpha, r\rangle$ discussed in the first exercise. The goal now is to calculate the Wigner function associated to this state. Remember that

$$
W(\beta)=\frac{1}{\pi^{2}} \int d^{2} \eta e^{\eta^{*} \beta-\eta \beta^{*}} \chi(\eta)
$$

By writting everything in terms of real and imaginary parts, you will retrieve to Gaussian integrals (for η_{r} and for η_{i}). Remember that the Fourier transform of a Gaussian is other Gaussian:

$$
\int_{-\infty}^{\infty} d x e^{-x^{2} / \sigma^{2}} e^{i k x}=\sqrt{\pi} \sigma e^{-k^{2} \sigma^{2} / 4}
$$

If we define $\beta=\left(x_{1}+i x_{2}\right) / 2$, and $\alpha=\left(X_{1}+i X_{2}\right) / 2$, show that

$$
W(\beta)=\frac{2}{\pi} e^{-\frac{1}{2} \frac{\left(x_{1}-X_{1}\right)^{2}}{e^{2 r}}} e^{-\frac{1}{2} \frac{\left(x_{2}-X_{2}\right)^{2}}{e^{-2 r}}}
$$

Exercise 3: P-Representation of a squeezed state

Try to evaluate the P-representation, $P(\beta)$, of a squeezed state. Remember that $\chi_{N}(\eta)=\chi(\eta) e^{|\eta|^{2} / 2}$, and that $P(\beta)=\int d^{2} \eta e^{\eta^{*} \beta-\eta \beta^{*}} \chi_{N}(\eta)$. Where is the problem?

