Exercise 1: The optical Bloch equations

We consider an atom excited by a laser that may decay into the many modes of the (vacuum) electromagnetic field (i.e. the problem of resonance fluorescence).

- From the master equation find the optical Bloch equations for $\left\langle\hat{\sigma}_{-}\right\rangle,\left\langle\hat{\sigma}_{+}\right\rangle$, and $\left\langle\hat{\sigma}_{z}\right\rangle$.
- Show that the solutions of the master equation are those indicated at the end of page 101 in the script.
- Given the Bloch vector $\vec{v}=\sigma_{x} \hat{x}+\sigma_{y} \hat{y}+\sigma_{z} \hat{z}$, show that

$$
\frac{d}{d t}|\vec{v}|^{2}=-\gamma\left[|\vec{v}|^{2}-1+\left(\left\langle\hat{\sigma}_{z}\right\rangle+1\right)^{2}\right]
$$

Exercise 2: Q-representation for the damped harmonic oscillator

Show that the Q-representation for a Fock state $|l\rangle$ is

$$
Q\left(\alpha, \alpha^{*}\right)=\frac{1}{\pi} e^{-|\alpha|^{2}} \frac{|\alpha|^{2 l}}{l!}
$$

Let us suppose that we have an harmonic oscillator in an initial Fock state with one excitation $|l=1\rangle$, i.e. $\hat{\rho}(0)=|1\rangle\langle 1|$. The oscillator is assumed to be in contact with a reservoir with $\bar{n}=0$, and damping constant γ (we use the same notation as in the theory lecture). Use the Green's function for the Fokker-Planck equation in the Q-representation for a damped harmonic oscillator $Q\left(\alpha, \alpha^{*}, t \mid \lambda, \lambda^{*}, 0\right)$ (see script, p. 128) to find the Qrepresentation $Q\left(\alpha, \alpha^{*}, t\right)$ at any time $t>0$.

To do the calculations you will need the following information:

- Remember that $Q\left(\alpha, \alpha^{*}, t\right)=\int d^{2} \lambda Q\left(\alpha, \alpha^{*}, t \mid \lambda, \lambda^{*}, 0\right) Q\left(\lambda, \lambda^{*}, 0\right)$.
- Employ the change of variables $r=|\lambda|$ and $\phi=\arg (\lambda)-\arg (\alpha)+\omega_{0} t$.
- You will need that

$$
\int_{0}^{2 \pi} d \phi \exp \left[\left(\frac{2|\alpha| e^{-\gamma t / 2}}{1-e^{-\gamma t}}\right) r \cos \phi\right]=2 \pi \sum_{0}^{\infty} \frac{1}{(k!)^{2}}\left[\frac{r|\alpha| e^{-\gamma t / 2}}{1-e^{-\gamma t}}\right]
$$

- You will also need the Gaussian integral

$$
2 \int_{0}^{\infty} r^{2 k+3} e^{-r^{2} /\left(1-e^{-\gamma t}\right)}=(k+1)!\left(1-e^{-\gamma t}\right)^{k+2}
$$

- Finally, it will be also useful the property

$$
\sum_{k=0}^{\infty} \frac{(k+1)!}{(k!)^{2}} x^{k}=e^{x}(1+x)
$$

If you do the calculation correctly you should obtain:

$$
Q\left(\alpha, \alpha^{*}, t\right)=\frac{1}{\pi} e^{-|\alpha|^{2}}\left[1-e^{-\gamma t}+|\alpha|^{2} e^{-\gamma t}\right]
$$

Obtain the stationary state solution. Which kind of state is the stationary state? Remember the discussion about the Q-representation in p. 66 of the script.

The Quantum Optics team wishes you Merry Christmas!!

