## Exercise 1: Operator ordering (11 points)

With these exercises you will practice a little bit with the ordering of operators, an important issue in quantum mechanics in general, and in quantum optics in particular. You will learn in the way some useful tricks.

- (2 points) Let's consider two operators $A$ and $B$. You will first show that

$$
e^{A} B e^{-A}=B+[A, B]+\frac{1}{2!}[A,[A, B]]+\frac{1}{3!}[A,[A,[A, B]]]+\ldots
$$

In order to do that, consider the function $F(\theta)=e^{\theta A} B e^{-\theta A}$, and perform its Taylor expansion: $F(\theta)=F(0)+\left.\frac{d F}{d \theta}\right|_{\theta=0} \theta+\left.\frac{1}{2!} \frac{d^{2} F}{d \theta^{2}}\right|_{\theta=0} \theta^{2}+\ldots$. From the form of $F(\theta=1)$ you will demonstrate the expression above.

- (3 points) Consider now that $[A,[A, B]]=[B,[A, B]]=0$, you will demonstrate now the Baker-Hausdorff formula:

$$
e^{A+B}=e^{A} e^{B} e^{-[A, B] / 2}
$$

We define the operator $F(\theta)=e^{\theta(A+B)}$, and use the ansatz $F(\theta)=e^{p(\theta) A} e^{q(\theta) B} e^{r(\theta)[A, B]}$. We want to find the functions $p, q$ and $r$. To find them, evaluate $d F / d \theta$ and express it in the form $d F / d \theta=G F(\theta)$, where $G$ is an operator. Find the operator G for both the form $e^{\theta(A+B)}$ and the ansatz (for this you will need the property that you just demonstrated in the first part of the exercise). We impose that these two G operators must be the same. By equating the coefficients for $A, B$ and $[A, B]$ you will find very simple equations for $p, q$ and $r$. Once you have found these functions, just take $\theta=1$ and you will have the Baker-Hausdorff formula.

- (5 points) This trick may be employed for more involved expressions. Consider the operators $K_{+}, K_{-}$, and $K_{3}$, such that $\left[K_{+}, K_{-}\right]=-2 K_{3}$, and $\left[K_{3}, K_{ \pm}\right]= \pm K_{ \pm}$. We are interested in showing that

$$
e^{\theta\left(K_{+}-K_{-}\right)}=e^{\tanh (\theta) K_{+}} e^{-\ln \left(\cosh ^{2} \theta\right) K_{3}} e^{-\tanh (\theta) K_{-}} .
$$

In order to do so, we will proceed as above. We define $F(\theta)=e^{\theta\left(K_{+}-K_{-}\right)}$, and consider the ansatz $F(\theta)=e^{p(\theta) K_{+}} e^{q(\theta) K_{3}} e^{-p(\theta) K_{-}}$. As above you calculate $d F / d \theta=G F(\theta)$ for both expressions, and equate the coefficients of $K_{+}, K_{-}$and $K_{3}$. In this way you will get equations for $p$ and $q$, and you will demonstrate the expression above.

- (1 point) The previous expression can be employed to express the squeezing operator in normal order, which is particularly useful in some occasions:

$$
S(\epsilon)=e^{\epsilon^{*} a^{2} / 2-\epsilon\left(a^{\dagger}\right)^{2} / 2}=(\cosh r)^{-1 / 2} e^{-\Gamma\left(a^{\dagger}\right)^{2} / 2} e^{-\ln (\cosh r) a^{\dagger} a} e^{\Gamma^{*} a^{2} / 2}
$$

with $\epsilon=r e^{i 2 \phi}$, and $\Gamma=e^{2 i \phi} \tanh r$. You may demonstrate this by taking $K_{-}=$ $e^{-2 i \phi} a^{2} / 2, K_{+}=K_{-}^{\dagger}$. Find $K_{3}$, and show that $K_{ \pm}$and $K_{3}$ fulfill the commutations rules mentioned above. Using the expression above you will find the normal ordering form of the squeezing operator.

