Sheet 1 (to be returned on 4.12.2013 during the exercise class)

In this exercise sheet you will practice a bit with the concept of master equation.

Exercise 1: Damped harmonic oscillator

- (2 Points) Show that the thermal density operator:

$$
\hat{\rho}_{T}=e^{-\hbar \omega_{0} \hat{a}^{\dagger} \hat{a} / k_{B} T}\left(1-e^{-\hbar \omega_{0} / k_{B} T}\right)
$$

is a stationary solution (i.e. $d \hat{\rho}_{T} / d t=0$) of the master equation of the damped harmonic oscillator of frequency ω_{0} that we have discussed in the theory class.

- (1 point) Show also that at any time it is fulfilled that $\frac{d}{d t} \operatorname{Tr}\{\hat{\rho}\}=0$. What does this mean physically?
- (2 points) In the class we assume that the modes of the reservoir followed a thermal statistics. Suppose that now we consider a vaccuum statistics, i.e. that $\left\langle\hat{r}_{j}^{\dagger} \hat{r}_{k}\right\rangle=0$, and $\left\langle\hat{r}_{j} \hat{r}_{k}^{\dagger}\right\rangle=\delta_{j, k}$ (using the same notation as in the theory class). Obtain the new form of the Master Equation.
- (1 point) Take the master equation of the previous exercise, and consider the interaction picture (so just remove the $\hbar\left(\omega_{0}+\Delta\right)$ term, i.e. the commutator term). Suppose that we consider now that the damped oscillator is driven by a resonant linear force, i.e. the system Hamiltonian has an extra term $E_{0} x$. Show that the master equation becomes of the form (you just have to justify where the first term comes from since the second term should be already familiar to you!):

$$
\frac{d}{d t} \hat{\rho}=i \epsilon\left[\hat{a}+\hat{a}^{\dagger}, \hat{\rho}\right]+\frac{\gamma}{2}\left(2 \hat{a} \hat{\rho} \hat{a}^{\dagger}-\hat{a}^{\dagger} \hat{a} \hat{\rho}-\hat{\rho} \hat{a}^{\dagger} \hat{a}\right)
$$

- (2 points) Calculate for the previous exercise (always in the interaction picture) $\frac{d\langle\hat{a}\rangle}{d t}$, and obtain the time evolution of $\langle\hat{a}\rangle(t)$. You will see that contrary to the un-driven case, now $\langle\hat{a}\rangle$ does not vanish for long times $t \gg 1 / \gamma$.
- (2 points) Show that for the driven case, you get that the coherent state $|2 i \epsilon / \gamma\rangle$ is the stationary solution (always in the interaction picture).

