
Exercises Theoretical Quantum Optics Prof. Dr. Luis Santos
Sheet 1 (to be returned on 18.12.2013 during the exercise class)

In this exercise sheet you will further practice the concept of master equation, learning
at the same time important concepts as population trapping, adiabatic elimination and
the Zeno-like effect.

.

Exercise 1: Three level system (11 points)

Consider a three level system as in the figure, with an excited state |3〉 and two
ground-state levels |1〉 and |2〉. It is similar to the one you already saw in the second
sheet. Now we consider that there is spontaneous emission from |3〉 into both |1〉 and
|2〉. For simplicity we consider both spontaneous emission rates equal, γ1 = γ2 = γ. We
introduce the annihilation operators âj=1,2,3 associated to each level.

In absence of spontaneous emission, the physics is given by the Hamiltonian:

Ĥ0 =
∑

j=1,2,3

Ej â
†
j âj −

∑

j=1,2

~Ωj

[

e−iωLjtâ†3âj +H.c.
]

where ωLj is the frequency of the laser connecting |j = 1, 2〉 and |3〉, Ωj are the corre-
sponding Rabi frequencies, and Ej is the energy of the j = 1, 2, 3 level. You may take
E3 = 0, and hence Ej=1,2 = −~ωj3, with ωj3 the transition frequency between the states
|j = 1, 2〉 and |3〉. We introduce the detunings ∆j=1,2 = ωLj − ωj3. We will assume that
∆1 = ∆2 = ∆.

• (1 Point) Write down the Hamiltonian Ĥ0 in the interaction picture with respect to
the Hamiltonian ĤA =

∑

j Ej â
†
j âj. Re-express the Hamiltonian as a function of the

operators âB and âD of the bright and the dark states. (Note: recall from sheet 2
the definition of dark and bright state; this will allow you to write easily âB and âD
as a function of â1 and â2, and viceversa.)

• (1 point) We will now introduce the spontaneous emission. Write the corresponding
master equation in the interaction picture with ĤA. You do not need to derive it
from scratch. Just proceed in exactly the same way as we did in the theory class on
resonance fluorescence. The only difference is that now you will have two dissipative



terms, one from |3〉 to |1〉 and the other from |3〉 to |2〉. (Note: as in the discussion
of resonance fluorescence in the class we consider a vaccuum electromagnetic field,
i.e. no thermal term in the master equation.)

• (2 points) Re-express the master equation in terms of the operators of the bright
and dark states that you got in the first point.

If you did all properly you should get ρ̇ = LBρ̂+ LDρ̂, with

LB = −
i

~
[Ĥ0, ρ̂] +

γ

2

[

2σ̂−
B ρ̂σ̂

+

B − σ̂+

B σ̂
−
B ρ̂− ρ̂σ̂+

B σ̂
−
B

]

and
LD =

γ

2

[

2σ̂−
Dρ̂σ̂

+

D − σ̂+

Dσ̂
−
Dρ̂− ρ̂σ̂+

Dσ̂
−
D

]

with σ̂+

B,D = 2â†3âB,D.

• (2 points) Now we may evaluate the evolution of the populations ρjj(t) = 〈â†j âj〉 for
j = D,B, 3 (note that

∑

j=D,B,3 ρjj = 1), as well as the evolution of the correlation

functions ρjk(t) = 〈â†j âk〉 (which are complex numbers, ρjk = ρjk,r + iρjk,i, and
ρjk = ρ∗kj). Consider for simplicity ∆ = 0. Show that you may write the following
closed system of equations:

d

dt
ρDD = γρ33,

d

dt
ρ33 = −2γρ33 + Ωρ3B,i

d

dt
ρ3B,i = −γρ3B,i +

Ω

2
(1− ρDD − 2ρ33)

You see that the population in the dark state just can grow. This is because it
receives population from the spontaneous emission, but what falls in the dark state
remains there, since the dark state is disconnected from |3〉. This important effect
is called coherent population trapping.

• (3 points) Try to solve the equations numerically. Consider as initial condition the
state |1〉. If you assume for simplicity Ω1 = Ω2, you will see that this means
ρ33(0) = ρ3B,i(0) = 0, and ρDD = 1/2. You may use the following Mathematica
code (where we use a dimensionless time t ≡ Ωt, and γ ≡ γ/Ω):

tmax = 20.;

gamma = 1;

sol = NDSolve[{ ri’[t] == -gamma*ri[t] - n3[t] + 1./2.*(1 - nd[t]),

n3’[t] == ri[t] - 2*gamma*n3[t],

nd’[t] == gamma*n3[t], ri[0] == 0., n3[0] == 0.,

nd[0] == 1./2. }, { ri[t], n3[t], nd[t] }, { t, 0, tmax } ];

Plot[Evaluate[nd[t] /. sol], { t, 0, tmax }, PlotRange -> All]

This program plots the evolution of ρDD(t). Play a bit with the value of γ/Ω. You
will see that when you increase this ratio, first the evolution becomes faster, but for
a sufficiently large ratio the evolution becomes actually slowlier and slowlier. This
effect is linked to the Zeno effect I mentioned in one of the theory classes.



• (2 points) We will finally consider the case in which γ ≫ Ω. This regime may be
studied analytically using the so-called adibatic elimination. The damping is so fast
that we can basically assume that n3 and ρI are basically in a stationary regime, i.e.
we may approximate in the equations above ρ̇33 = ρ̇3B,i = 0 (you can check in the
numerics that if you take a large γ, ρ33 and ρ3B,i basically are time independent).
If you do so, you can eliminate ρ33 and ρ3B,i, and get a simple equation for ρDD.

If you did it properly you should get that ρDD(t) ≃ 1 − 1

2
e−

Ω
2

4γ
t (you may check

numerically that this expression reproduces well what you get from the code above
for γ/Ω > 5). You see hence that for large γ, the time scale is given by γ/Ω2, and
hence the time scale becomes larger and larger (i.e. the dynamics becomes slowlier
and slowlier) when γ grows!


