Exercise 1 (3 Points)

Consider a classical gas of N noninteracting diatomic molecules in a volumen V. The Hamiltonian of a single molecule is given by

$$
H\left(\vec{p}_{1}, \vec{p}_{2}, \vec{r}_{1}, \vec{r}_{2}\right)=\frac{\left|\vec{p}_{1}\right|^{2}+\left|\vec{p}_{2}\right|^{2}}{2 m}+\frac{K}{2}\left|\vec{r}_{1}-\vec{r}_{2}\right|^{2},
$$

where $\vec{p}_{1}, \vec{p}_{2}, \vec{r}_{1}$, and \vec{r}_{2} are the momenta and coordinates of the two atoms of the molecule. Obtain

- the Helmholtz potential,
- the specific heat at constant volume $\left(C_{V}\right)$,
- the average $\left.\langle | \vec{r}_{1}-\left.\vec{r}_{2}\right|^{2}\right\rangle$.

You may use that $\int d^{3} \vec{r}_{1} d^{3} \vec{r}_{2} f\left(\vec{r}_{1}, \vec{r}_{2}\right)=\int d^{3} \vec{R}_{c m} d^{3} \vec{r} f\left(\vec{R}_{c m}, \vec{r}\right)$, where $\vec{R}_{c m}=\left(\vec{r}_{1}+\vec{r}_{2}\right) / 2$ and $\vec{r}=\vec{r}_{1}-\vec{r}_{2}$.

Exercise 2 (3 Points)

Consider a system of non-interacting particles.

- If $Q_{1}(T, V)$ is the canonical partition function for one particle, show that the grandcanonical partition function is of the form $\tau(z, T, V)=e^{z Q_{1}(T, V)}$ (Hint: You will probably need to remember the Taylor series of the exponential function).
- Assume that the energy of the non-interacting particles is an arbitrary function of the velocity of the particle, being independent of the position. Using the theory of the grand-canonical ensemble obtain the equation of state, and compare it to the result obtained for the typical case in which $E=p^{2} / 2 m$.

Exercise 3 (4 Points)

Consider a classical system with N particles in a volumen V. The particles interact through a two-body potential $u(r)$, where $r=|\vec{r}|$ is the interparticle distance. Hence, the Hamiltonian function of the system is:

$$
H=\sum_{i=1}^{N} \frac{\left|\overrightarrow{p_{i}}\right|^{2}}{2 m}+\sum_{i<j} u_{i j}
$$

where $u_{i j}=u\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)$, and \vec{r}_{i} is the position of the i th particle. We define the function $f(r) \equiv e^{-\beta u(r)}-1$, with $\beta=1 / k_{B} T$.

1. By using the theory of the canonical ensemble show that

$$
\frac{P v}{k_{B} T}=1+v \frac{\partial}{\partial v} R(v, T)
$$

where $v=V / N$ is the specific volumen, and

$$
R(v, T) \equiv \frac{1}{N} \ln \left\{\frac{1}{v^{N} N^{N}} \int d^{3 N} \vec{r} \prod_{i<j}\left(1+f_{i j}\right)\right\}
$$

where $f_{i j}=f\left(\left|\vec{r}_{i}-\vec{r}_{j}\right|\right)$.
2. If the interactions are very weak, one obtains

$$
\frac{P v}{k_{B} T} \simeq 1+\frac{1}{v} a_{2}(T),
$$

where $a_{2}(T) \equiv-\frac{1}{2} \int_{0}^{\infty} d r 4 \pi r^{2} f(r)$.
Calculate the coefficient $a_{2}(T)$ assuming that $u(r)=0$ for $r<\sigma, u(r)=-\epsilon$ for $\sigma<r<r_{0}$, and $u(r)=0$ for $r>r_{0}$.

