Exercise 1 (1 Point)

Consider N particles, and g boxes. How many different distributions can you find if the particles are (i) indistinguishable and fermions, or (ii) indistinguishable and bosons?

Exercise 2 (3 Points)

Consider a three-dimensional harmonic oscillator of frequency ω for a single particle of mass m.

- Consider the harmonic oscillator as classical. Calculate the canonical partition function, and from it the Helmholtz free energy, the internal energy and the entropy.
- Consider the harmonic oscillator as quantum. Calculate again the canonical partition function, and from it the Helmholtz free energy, the internal energy and the entropy.
- Compare the quantum and classical results for the free energy when $\hbar \omega / k_{B} T$ is very small. How do you intepret your findings?

Exercise 3 (6 Points)

Consider two particles of spin $1 / 2$ in a magnetic field. Each one of the particles can then be in a state $|\uparrow\rangle$ or a state $|\downarrow\rangle$ (or a linear superposition of both). The Hamiltonian describing the physics of this system is provided by the expression:

$$
\hat{H}=J \vec{s}_{1} \cdot \vec{s}_{2}+h\left(\hat{s}_{1}^{z}+\hat{s}_{2}^{z}\right)=J \sum_{i=x, y, z} s_{1}^{i} \otimes s_{2}^{i}+h\left(\hat{s}_{1}^{z} \otimes \mathbb{1}_{2}+\mathbb{1}_{1} \otimes \hat{s}_{2}^{z}\right)
$$

where $\mathbb{1}$ is the identity matrix of a single system and $\vec{s}=\left(\hat{s}^{x}, \hat{s}^{y}, \hat{s}^{z}\right)=\frac{1}{2} \vec{\sigma}=\frac{1}{2}\left(\hat{\sigma}_{x}, \hat{\sigma}_{y}, \hat{\sigma}_{z}\right)$. The entries of the last vector are the familiar Pauli matrices $\hat{\sigma}_{x}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, $\hat{\sigma}_{y}=$ $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, and $\hat{\sigma}_{z}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ in the basis $\{|\uparrow\rangle,|\downarrow\rangle\}$. Assume $J>0$ and $h \geq 0$.
Part A (3 of 6 Points)

- Write down the Hamiltonian in the two-particle basis $\{|\uparrow \uparrow\rangle,|\uparrow \downarrow\rangle,|\downarrow \uparrow\rangle,|\downarrow \downarrow\rangle\}$, and determine its eigenvalues and eigenvectors. What is the ground state (the state of lowest energy)?
- Determine the density matrix of the possible ground states, and calculate its time evolution. Evaluate the time-average $\bar{\rho}=\frac{1}{T} \int_{0}^{T} \rho(t)$ (for $\left.T \rightarrow \infty\right)$.
- Consider the density matrix associated with the pure state $|\uparrow \downarrow\rangle$. Calculate its time evolution and obtain the time average.
- Consider a mixed state (remember the difference between mixed and pure state) formed by 50% of state $|\uparrow \downarrow\rangle$ and 50% of state $|\downarrow \uparrow\rangle$. Write down the corresponding density matrix, and obtain its time average.

Part B (3 of 6 Points)

The entropy of a density matrix ρ is given by $S=-k_{B} \cdot \operatorname{Trace}[\rho \ln \rho]$.

- Use the fact that the trace of a matrix is independent of the representation of the matrix to show that $S=-k_{B} \sum_{i} \lambda_{i} \ln \lambda_{i}$, where λ_{i} are the eigenvalues of ρ.
- Calculate the entropy of both the initial state and the time averaged state for the cases (i) the initial state is the ground state, and (ii) the initial state is $|\uparrow \downarrow\rangle$, with the help of the results of part A.

