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Problem 1

In his last book, the so-called ‘Discorsi’ from 1638, Galileo Galilei outlined a hought-
experiment that apparently allows him to conclude rigorously and without ever per-
forming any real experiments the validity of UFF (Universality of Free Fall). This
means that in a static and homogeneous gravitational field bodies suffer the same ac-
celeration, independent of their mass and composition (chemical, physical, or other-
wise).

In modernised terminology, the argument runs as follows: Let there be two bodies,
B1 and B2 of masses m1 and m2 > m1, respectively. Let the gravitational field be
!g = −g!ez, where g = 9.81m · s−2 (actually, the numerical value does not matter
here). Galilei aims to produce a contradiction to a claim he attributes to Aristotle,
roughly saying that the free-fall acceleration is a monotonously increasing function
of the mass. Now, suppose this is indeed the case. Then B1 and B2 will fall in the
negative z-direction with accelerations a1 and a2, respectively, where a2 > a1. Now
suppose we glue B1 on top of B1, so as to produce an new compound body, B3, of
mass m3 = m1 +m2 > m2 > m1. Then, according to our hypothesis, the compound
body (i.e. its centre of mass) will fall with still greater acceleration than B2:

a1 < a2 < a3 . (1)

On the other hand, let us think for a moment of the glue between the bodies as a
short elastic link, like a rubber band connecting B1 to B2. Then, since a2 > a1, B2

will overtake B1 and the rubber-band connection will be set under tension, trying to
accelerate B1 above a1 and to decelerate B2 below a2. By making the rubber band
tighter and shorter we can approximate the glued situation to any degree of accuracy
without loosing any of the principal arguments. In this way we are led to another
conclusion, namely that the combined systems (i.e. its center of mass) will fall with an
acceleration in between a1 and a2:

a1 < a3 < a2 (2)

Now, having “derived” both equations (1) and (2), we arrive at the desired contra-
diction. It implies that at least one of our initial hypotheses must be false. How-
ever, since we apparently only used the hypothesis that the free-fall acceleration is a
monotonously increasing function of mass, and since the argument would just be the
same if it were assumed to be a monotonously decreasing function, and since the argu-
ment would still apply to masses within any mass-intervall in which the acceleration is
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locally monotonic, we seem to to be able to conclude rigorously that the acceleration
cannot in fact depend on the mass at all: It must be the same for all masses, depending
only on the gravitational field itself. This, finally, is how Galilei claims to be able to
defeat the idea of Aristotle by pure reason, i.e. without any experiment.

Ingenious! Don’t you think so? (Recall that this argument predates the formulation of
Newtonian mechanics.)

Analyse the argument in the context of Newtonian mechanics, keeping inertial- and
(passive) gravitational mass well distinguished. Lookout for hidden assumptions
Galilei’s argument might contain.

The following exercise might help you on the right track. Imagine a person of inertial
mass mi and (passive) gravitational mass mg standing on an ordinary bathroom scale.
Both are placed in an elevator that momentarily descends in the direction of the gravi-
tational field with acceleration a < g (for a ≥ g the person would take-off the scale).
Calculate the weight (i.e. the force) shown by the scale at this moment of time. What
lesson can you draw from this calculation concerning Galilei’s thought experiment?

Problem 2

Two mass points move under the influence of their mutual gravitational force according
to Newton’s equations of motion and law of gravity. We carefully distinguish between
active and passive gravitational mass.

Show that the total momentum is preserved if and only if the ratio between active and
passive gravitational mass is the same for both. Show that in this case there is also
energy conservation.

Now assume equality between inertial and gravitational masses. Show that in this case
everything said so far is still valid the mass of one of the bodies is negative and positive
for the other one. Give explicit solutions to the equations of motion for this system of
two bodies in the case that their masses are equal in modulus and opposite in sign.

Problem 3

In this problem inertial = passive-gravitational = active-gravitational mass. We let ρ
denote the mass density and φ the gravitational potential. Newton’s field equation is

∆φ = 4πG ρ . (3)

We assume ρ to be of compact support.

Show that the integral of ρ over all of space equals the active gravitational M, which
equals the (appropriately normalised) flux of the gravitational field ‘at infinity’:

M := lim
r→∞

{
1

4πG

∫

S2(r)

!∇φ · !n do

}
. (4)

Here S2(r) is a two sphere with radius r centred at the origin.
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The gravitational force-density by which the mass-distribution acts onto itself is

!f = −ρ !∇φ . (5)

Show that it can be written as the divergence of a symmetric tensor of rank 2:

fa = −∇btab , (6)

where
tab =

1

4πG

!
∇aφ∇bφ− 1

2δab∇cφ∇cφ
"
. (7)

Use this to show that the total force and total torque by which the distribution acts on
itself vanish.

Problem 4

Just like in electrostatics, we can assign an energy density ε to the Newtonian gravita-
tional field. It is given by

ε(!x) =
−1

8πG
‖!∇φ(!x)‖2 . (8)

The opposite sign results from the attractivity of forces between like masses. Can you
derive this expression?

If we assume on top of Newton’s equations that any energy E corresponds to an inertial
mass m according to E = mc2 and that inertial and gravitational (active and passive)
mass equals inertial mass, we can attempt to “improve” Newton’s equation (3) by
adding to the source ρ on the right-hand side the corresponding term ε/c2 from the
field itself:

∆φ = 4πG

#
ρ−

1

8πGc2
‖!∇φ‖2

$
. (9)

Determine all spherically symmetric solutions of this equation with asymptotic be-
haviour φ(r → ∞) → 0 and mass distribution:

ρ(!x) =

{
σ = const. for r ≤ R ,

0 for r > R .
(10)

(Tip: The field-redefinition ψ := exp(φ/2c2) linearises (9) which is then easily solved
for r > R and r < R. Require finiteness of solution at r = 0 und C1 at r = R.)

The active gravitational mass M is still defined by the (appropriately normalised) Flux
of the gravitational field, i.e. by (4). Now this is not equal to the space integral of
ρ. Show for the solution just obtained that M, considered as function of the star’s
constant density σ and its radius, is given by (we set ω :=

%
2πGσ/c2):

M(σ, R) =
2c2R

G

#
1−

tanh(ωR)

ωR

$
. (11)
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Use that to show the following inequality, which does not depend on σ:

M <
2c2R

G
. (12)

[One may show, that this inequality remains valid even if the star’s density is not
constant - though still spherically symmetric - i.e. depends on r.]

How do you interpret this result? Why is it impossible to increase M arbitrarily by
putting more matter in the volume inside a sphere of fixed radius R - quite in contrast
to the Newtonian case? Can you give a solution to (9) where ρ(!x) = δ(3)(!x), in
analogy to the “fundamental solution” ∝ 1/r of (3) ?
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