Exercises for the lecture on
 Introduction into General Relativity

by Domenico GiUlini

Sheet 10

Problem 1

Consider a 3-parameter family of timelike geodesics $\gamma(\mathrm{s}, \vec{\sigma})$, where s is the proper length along the geodesic labelled by $\vec{\sigma}:=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$. This is sometimes called a (3-dimensional) "geodesic congruence". We assume that $\vec{\sigma}$ ranges over some open set $\mathrm{U} \subset \mathbb{R}^{3}$ and that the map

$$
\begin{equation*}
\gamma: \mathbb{R} \times \mathrm{U} \rightarrow M, \quad(\mathrm{~s}, \vec{\sigma}) \mapsto \gamma(\mathrm{s}, \vec{\sigma}) \tag{1}
\end{equation*}
$$

is a smooth diffeomorphism of $\mathbb{R} \times U$ onto the image $\operatorname{Im}(\gamma) \subseteq M$ of γ.
For any fixed $\vec{v} \in \mathbb{R}^{3}$ consider the following vector fields on $\operatorname{Im}(\gamma)$:

$$
\begin{align*}
& \dot{\gamma}:=\frac{\partial \gamma}{\partial s} \tag{2a}\\
&=\gamma_{*}\left(\frac{\partial}{\partial s}\right) \tag{2b}\\
& \gamma^{\prime}:=v^{a} \frac{\partial \gamma}{\partial \sigma^{a}}
\end{align*}=\gamma_{*}\left(v^{a} \frac{\partial}{\partial \sigma^{a}}\right)=v^{a} \gamma_{*}\left(\frac{\partial}{\partial \sigma^{a}}\right) .
$$

That the integral lines of $s \mapsto \gamma(s, \vec{\sigma})$ be geodesics means that

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \dot{\gamma}=0 \tag{3}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathrm{L}_{\dot{\gamma}} \gamma^{\prime}=0 \tag{4}
\end{equation*}
$$

Next consider the projection of γ^{\prime} orthogonal to $\dot{\gamma}$:

$$
\begin{equation*}
\gamma_{\perp}^{\prime}:=\gamma^{\prime}-\mathrm{g}\left(\gamma^{\prime}, \dot{\gamma}\right) \dot{\gamma} \tag{5}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathrm{L}_{\dot{\gamma}} \gamma_{\perp}^{\prime}=0 \tag{6}
\end{equation*}
$$

(Hint: (6) follows from (5) once you prove $\dot{\gamma}\left(g\left(\dot{\gamma}, \gamma^{\prime}\right)\right)=0$. To show that, use covariant derivatives, the geodesic equation (3), the fact that (5) implies $\nabla_{\dot{\gamma}} \gamma^{\prime}=\nabla_{\gamma^{\prime}} \dot{\gamma}$ (for torsion-free connection), and that $\nabla_{\gamma^{\prime}} \dot{\gamma}$ is perpendicular to $\dot{\gamma}$.)

Finally prove the so-called Jacobi-Equation of Geodesic Deviation:

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \nabla_{\dot{\gamma}} \gamma_{\perp}^{\prime}=\mathrm{R}\left(\dot{\gamma}, \gamma_{\perp}^{\prime}\right) \dot{\gamma} \tag{7}
\end{equation*}
$$

(Hint: Recall the definition of curvature: $\left(\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]}\right) Z=R(X, Y) Z$ and use it for $X=Z=\dot{\gamma}$ and $Y=\gamma_{\perp}^{\prime}$. Recall also that the connection is torsion-free.)

Problem 2

The purpose of this exercise is to express equation (7) along the integral line of a single geodesic $s \mapsto \gamma(s, \vec{\sigma})$ for some fixed value $\vec{\sigma}$, in terms of components of a conveniently chosen basis. Use an adapted orthonormal $\left\{e_{\alpha}: \alpha=0,1,2,3\right\}$, i.e. $e_{0}=\dot{\gamma}$ and $g\left(e_{\alpha}, e_{\beta}\right)=\eta_{\alpha \beta}=\operatorname{diag}(1,-1,-1,-1)$, which is covariant constant along the selected integral line, i.e $\nabla_{\dot{\gamma}} e_{\alpha}=0$ holds along that integral line. Show that (7) is then equivalent to

$$
\begin{equation*}
\frac{d^{2} n^{a}}{d s^{2}}=R_{00 b}^{a} n^{b} \tag{8}
\end{equation*}
$$

where we set $\mathfrak{n}=\mathfrak{n}^{a} e_{a}:=\gamma_{\perp}^{\prime}$. How do you interpret this equation?

Problem 3

Write down the Jacobi equation (8) for the metric

$$
\begin{equation*}
g=\left(1+\frac{2 \phi(\vec{x})}{c^{2}}\right) c d t \otimes c d t-\left(1-\frac{2 \phi(\vec{x})}{c^{2}}\right) d \vec{x} \dot{\otimes} d \vec{x} \tag{9}
\end{equation*}
$$

in linear order in ϕ / c^{2} (Newtonian approximation) and for a geodesic congruence for which at time $t=0$ all geodesics are running parallel to the t axis (all particles are rest at this moment of time). What is this equation telling you?

Problem 4

Calculate all curvature components to linear order of a linearised, plane gravitational wave (compare Problem 3 of Sheet 7) in (+)-mode:

$$
\begin{align*}
g=c d t \otimes c d t & -\left(1-h_{+}(z-c t)\right) d x \otimes d x \\
& -\left(1+h_{+}(z-c t)\right) d y \otimes d y \tag{10}\\
& -d z \otimes d z
\end{align*}
$$

Write down the Jacobi equation (8) for the timelike geodesic congruence of the metric (10) in which the spatial coordinates are all constant along each geodesic. (Hence the parameters $\vec{\sigma}$ may be identified with the coordinates $\vec{x}=(x, y, z)$.) Again: What is this equation telling you?

Problem 5 (for the Bravehearts)

Calculate all Riemann-, Ricci, and Einstein-Tensor components of the most general spherically symmetric metric (R is a constant of dimension "length")

$$
\begin{align*}
g & =e^{2 a(t, r)} d x^{0} \otimes d x^{0} \\
& -e^{2 b(t, r)} d r \otimes d r \tag{11}\\
& -e^{2 c(t, r)} R^{2}\left(d \theta \otimes d \theta+\sin ^{2}(\theta) d \varphi \otimes d \varphi\right)
\end{align*}
$$

with respect to the orthonormal co-frame $\theta^{0}=e^{a} d x^{0}, \theta^{1}=e^{b} d r, \theta^{2}=e^{c} R d \theta$, and $\theta^{3}=e^{c} R \sin (\theta) d \varphi$.

