
Exercises for the lecture on

Introduction into General Relativity
by DOMENICO GIULINI

Sheet 11

Problem 1

Recall the exterior Schwarzschild metric in an orthonormal frame

g = θ0 ⊗ θ0 −

3∑

a=1

θa ⊗ θa , (1)

where (rS = 2m = 2GM/c2):

θ0 =
!
1−

rS
r

"1/2
cdt , θ1 =

!
1−

rS
r

"−1/2
dr ,

θ2 = r dθ , θ3 = r sin(θ)dϕ . (2)

In Lecture 18 we have calculated its curvature components in the orthonormal frame
(2). The result is (compare equations (18.29)):

rS
r3

= R0101 = −2R0202 = −2R0303 = 2R1212 = 2R1313 = −R2323 (3)

Consider a radial Lorentz transformation with rapidity α = tanh−1(v/c), under which
the basis θ0, θ1, θ2, θ3 is mapped to another orthonormal basis θ̂0, θ̂1, θ̂2, θ̂3, according
to

θ̂0 = cosh(α)θ0 + sinh(α)θ1 , θ̂1 = cosh(α)θ1 + sinh(α)θ0 , θ̂2 = θ2 , θ̂3 = θ3 . (4)

Show that the components R̂αβµν of the curvature tensor with respect this new basis
equal (3).

Problem 2

Consider the Jacobi equation of geodesic deviation which we discussed on Sheet 10.
In components with respect to a parallel-transported basis it may be written in the form

d2na

dτ2
= c2Ra

00bn
b . (5)

Here we used proper time τ rather than proper length as parameter, which accounts for
the factor c2 on the right-hand side.

We apply this equation to a family of geodesics, each of which is radially infalling in
the exterior Schwarzschild geometry. Hence the curvature components are given by
(3), even in the rest frame of the radially infalling observer, as was just shown.
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Show that

d2n1

dτ2
=

c2rS
r3

n1 , (6a)

d2n2

dτ2
= −

c2rS
2r3

n2 , (6b)

and identically for n3 instead of n2.

Apply this equation to the free fall of an elastic body. Neighbouring mass-elements
would drift apart radially according to (6a) and towards each other in the transversal
directions according to (6b), if the elastic forces of the body would not keep them in
place. We like to calculate these forces.

Consider a solid rod of length ℓ, constant rest-mass density ρ, and square-shaped cross
section of area q = a2, where a ≪ ℓ is the side of the square. The rod is freely falling
with its length oriented radially.

Show that the longitudinal tension (force per unit area) that acts on the cross section at
the rod’s midpoint is, according to (6a), given by

T‖ =
ρc2

8
·
#

ℓ

rS

$2

·
!rS
r

"3
. (7)

Hint: The calculation of the total tension at the midpoint is somewhat similar to the
calculation of the tension in the rotating rod that we discussed in Problem 2 of Sheet 8.

Problem 3

In this extercise we shall apply equation (7).

Imagine we drop the rod of the precious exercise of length ℓ = 25m made of steel (i.e.
like a railway line) with density 7.85g/cm3 and breaking tension σmax = 2100N/mm2

onto a neutron star of mass 1.5 solar masses and radius 10 km. We assume the geom-
etry outside the neutron star to be given by the Schwarzschild metric, which is a good
approximation if the neutron star has negligible spin.

Derive a lower limit for the number of pieces the railway line will be torn into before
hitting the star’s surface.

Next imagine a person (yourself?) jumping into a black hole - feets first. This means
We assume the exterior Schwarzschild metric to be valid down to, and below, the
Schwarzschild radius r = rS. We set ρ = 1 · g · cm−3 (density of water approximating
that of a human body), ℓ = 180 cm (length of a human body), and transversal dimen-
sion b = 33 cm (average width of a human body). Show that the longitudinal tension
(7) can be written as

T‖/E = Z

#
M⊙
M

· 104
$2

. (8)

Here M⊙ = 2 · 1033 g is the mass of the Sun and E = 105 g/(s2 cm) a unit of tension
(the “pain limit”) corresponding to the weight of a mass of 100 kg in the gravitational
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field of the earth equally distributed over a cross section of area b2 = 103 cm2. This E
is here thought of as the human “pain limit” for such stresses. Calculate the numerical
factor Z and estimate, the lower mass-limit, above which the the jump through the
horizon r = rS of black hole is “bearable”. What would you feel if you jumped
through the horizon of the black hole at the centre of our Galaxy?

In the following problem we shall calculate an upper bound for your remaining lifetime
after having passed the horizon.

Problem 4

We consider the metric

g =
!
1−

rS
r

"
cdt⊗ cdt2 −

!
1−

rS
r

"−1
dr⊗ dr

−r2
%
dθ⊗ dθ+ sin2(θ)dϕ⊗ dϕ

&
,

(9)

for r < rS. Prove that any timelike curve (not just geodesics!) having entered the
region r < rS from the outside will hit r = 0 within an eigentime less than

τmax =
π

2
· rS
c
. (10)

What effect would it have if you fired the boosters of your spaceship in the (hopeless)
attempt to escape your imminent “spaghettification” by the black hole?

Estimate your maximal remaining lifetime after passing the horizon of the black hole
in the centre of our Galaxy, which has 4.6 million solar masses?

Hint: In order to derive (10) start from
!
1−

rS
r

"
c2ṫ2 −

!
1−

rS
r

"−1
ṙ2 − r2

%
θ̇2 + sin2(θ) ϕ̇2

&
= 1 (11)

which is valid for any timelike curve xα(s) =
%
t(s), r(s), θ(s),ϕ(s)

&
parametrised in

terms of proper length s. First show: If r(s0) < rS and ṙ(s0) < 0 then ṙ(s) < 0 for all
s > s0. Show then that (−ṙ) > c

'
(rS/r)− 1 and hence (10) by integration.

Problem 5

Rewrite the Schwarzschild solution in terms of coordinates (u, v, θ,ϕ), where (θ,ϕ)
are as before and (u, v) are related to (t, r) via

u(ct, r) := ct− r∗(r) , (12a)

v(ct, r) := ct+ r∗(r) , (12b)

where

r∗(r) := r+ rS · ln
#((((

r

rS
− 1

((((

$
. (12c)

These are called the “Eddington-Finkelstein-Coordinates”. Note that the above trans-
formation formulae make sense for r > rS as well as for r < rS.
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Show that for r > rS they have the following interpretation: The curve u =
k = const. is a radially outgoing light ray intersecting the t = 0 hypersurface at
r = r−1

∗ (−k). Likewise, the curve v = k = const. is a radially ingoing light ray
intersecting the t = 0 hypersurface at at r = r−1

∗ (k).

Can you give an interpretation in the case r < rS?

Draw the curves u = 0 and v = 0 in the (ct, r)-half-plane r > 0.

Instead of (ct, r, θ,ϕ) #→ (u, v, θ,ϕ) consider the following two transformations
where only ct is replaced by u or v, respectively, and r is retained:

(ct, r, θ,ϕ) #→ (u, r, θ,ϕ) “outgoing Eddington-Finkestein Coordinates” (13a)

(ct, r, θ,ϕ) #→ (v, r, θ,ϕ) “ingoing Eddington-Finkestein Coordinates”. (13b)

Write the metric in these two systems of coordinated and show that for all r > 0 the
metric coefficients are regular and satisfy det{gαβ} ∕= 0 (except for the trivial zeros at
the poles θ = 0,π).

Draw a picture with the light-cones in the (u, r) and (v, r) coordinates each. (Hint:
Determine first which linear combinations of ∂/∂u and ∂/∂r in the first, and which
linear combinations of ∂/∂v and ∂/∂r in the second case are lightlike.)

Problem 6

Again we consider the exterior Schwarzschild solution for r > rS in new coordinates.
This time we replace t by a new time coordinate T(t, r) according to

cT(t, r) := ct+ f(r) . (14)

The function f shall be determined by the requirement that the hypersurfaces T =
konst be flat (i.e. their induced 3-dimensional Riemannian metric is flat).

Show that this is fulfilled if f obeys the differential equation

f ′(r) =

'
r/rS

(r/rS)− 1
, (15)

which for r > rS is solved by

f(r) = rS ·
{
2
'

r/rS + ln

)'
r/rS − 1'
r/rS + 1

*}
. (16)

Show that the exterior Schwarzschild metric then assumes the form

g =
%
1− rS/r

&
cdT ⊗ cdT

−
'

rS/r
%
cdT ⊗ dr+ dr⊗ cdT

&

− dr⊗ dr− r2(dθ⊗ dθ+ sin2 θdϕ⊗ dϕ) ,

(17)

which is regular at r = rS (why?).
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Draw the the curve T = 0 in the (ct, r)− half plane r > rS.

The coordinates (T, r, θ,ϕ) are called “Gullstrand-Painlevé-coordinates” and T the
“Gullstrand-Painlevé-Time”.

Consider radially infalling geodesics obeying ṙ → 0 for r → ∞. Show that their
four-velocities are

u =
!
1−

rS
r

"−1 ∂

∂t
− c

+
rS
r

∂

∂r
, (18a)

which in (T, r)-coordinates take the form

u =
∂

∂T
− c

+
rS
r

∂

∂r
. (18b)

Consider the corresponding one-form field u↓! := g(u, ·) and show that it takes the
following form in Schwarzschild coordinates

u! = c2 dt+ c ·
'

rS/r

(rS/r)− 1
dr , (19a)

and hence
u! = c2 dT . (19b)

use (19b) and (18b) to justify the following two statements: 1) The geodesic vector
field u is everywhere perpendicular to the hypersurfaces of constant T : 2) The eigen-
time τ along an integral curve of u between its intersection points with the hypersur-
faces T = T1 and T = T2 > T1 is just τ = (T2 − T1).

Problem 7

We consider 2-dimensional Minkowski space in standard coordinates (ct, x). In the
region x > |ct| we intriduce new “hyperbolic polar coordinates” (λ, ξ), where ξ > 0,
through

ct(λ, ξ) = ξ · sinh(λ) ,

x(λ, ξ) = ξ · cosh(λ) .
(20)

Show that in terms of them the Minkowski metric reads

η := cdt⊗ cdt− dx⊗ dx = ξ2 dλ⊗ dλ− dξ⊗ dξ . (21)

Show that for fixed ξ the curve λ #→
%
ct(λ, ξ) , x(ξ, λ)

&
is an integral curve of the

Killing field K = x∂ct+ct∂x that generates boost in x-direction, with initial condition
ct(λ = 0, ξ) = 0. The parameter λ is just the rapidity of the generated boost.

Show that the parameter λ (also called “Killing time”) is related to the eigentime τ

along that curve by

τ =
ξ

c
· λ , (22)

if we choose τ = 0 for λ = 0.
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Show further that the modulus of the acceleration is given by

a =
c2

ξ
. (23)

Consider every point in the intervall [ξ1, ξ2] on the x-axis (t = 0) being transported by
the same parameter value λ along the flow of K. This map is an isometry, i.e. preserves
dinstances. The acceleration a = c2/ξ as well as the eigentime τ = ξ/c depends on
the point ξ, but the product a · τ = cλ is independent of it. What does that tell you as
regards the question of how to accelerate an extended material body in, say, x-direction
without deforming it? What would happen to the body if all of its points were moved
with the same acceleration?

Show that for fixed λ the curves ξ #→
%
ct(λ, ξ) , x(ξ, λ)

&
, ξ ≥ 0, are half-lines inter-

secting the integral lines of K perpendicularly. (Draw the lines of constant λ and ξ.)
According to the way one speaks in Special Relativity, the lines of constant λ consist
each of simultaneous events for the observer moving along K. On the other hand, all
these lines intersect at the origin, so that, following this way of speaking, the origin is
“simultaneous” to all other events in the region x > |ct|. Is that something to worry
about?

One could rewrite (20) by replacing λ according to (22) by τ and parametrise the region
x > |ct| by (τ, ξ) instead of (λ, ξ). How would the curves of constant eigentime τ look
like? Why do they look so different to the curves of constant λ?

Finally, consider the timelike wordline of an “observer” at constant ξ. Characterise
the coordinates (ct, x) of those points that can causally influence the observer (at any
point on his/her wordline) and also the set of points that the observer can causally
influence. The intersection of the complements of these two sets is a set called the
“causal complement” of the observer. How do you interpret the fact that observers
exist whose causal complement is non-empty? What about “realistic” observers (with
finite fuel reservoirs) whose acceleration phase lasts only a finite time, i.e. whose
wordlines are straight outside a bounded interval in proper time?

Can you imagine what all this has to do with the Schwarzschild geometry?
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