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Problem 1

Consider a point mass m in the spherically symmetric potential V(r). Assume the
mass to have total energy E and angular momentum !L = L!ez, where mr2ϕ̇ = L.
Show that !

dr

dϕ

"2
L2

r4
= 2m(E− V(r))−

L2

r2
. (1)

For the special potential V(r) = −α/r, called “Kepler potential” (because it gives rise
to orbits that are conic sections, first proposed to apply to planetary orbits by Johannes
Kepler), this can be integrated by elementary means, most easily by using u = 1/r as
independent variable. Show that one obtains

r(ϕ) =
p

1+ ε cosϕ
, (2a)

where

p :=
L2

mα
und ε :=

#
1+

2EL2

mα2
. (2b)

This is indeed a conic section. We are interested in E < 0, in which case it is an
ellipse with “semi-latus rectum” p, semi-major axis a = p/(1 − ε2) = −α/2E,
and eccentricity ε. ϕ = 0 corresponds to the point of closest approach, also called
periastron (and perihel if the solar system). The periastron returns periodically in ϕ

periods of 2π; that is, the period in r equals the period in ϕ and the orbit is spatially
closed. This is a special feature (degeneracy) of the Kepler potential.

For general V(r) the orbit will not be closed. Rather, from (1), we can derive the
following formula for the excess azimuth of the periastron’s recurrence:

2π+ ∆ϕ = 2

! rmax

rmin

dr L/r2$
2m

%
E− V(r)

&
− L2/r2

= −2
∂

∂L

''''
E

! rmax

rmin

dr

$
2m

%
E− V(r)

&
− L2/r2 . (3)

We now consider the potential V(r) = −α
r + ∆V(r) where ∆V is to be considered

as “small perturbation” of the Kepler potential. Derive the following formula for ∆ϕ,
valid to linear (leading) order in ∆V :

∆ϕ = m
∂

∂L

''''
E

"
1

L

! 2π

0

dϕ r2∗(ϕ;L, E) ∆V
%
r∗(ϕ;L, E)

&#
. (4)
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Here r∗(ϕ;L, E) denotes the solution (2a) to the unperturbed potential −α/r with val-
ued L and E for angular momentum and energy. Note that in (3) and (4) the expression
to the right of the partial derivative is considered as function of L and E, so that the
partial derivative with respect to L is to be taken at constant E, as indicated by the
symbol

''
E
.

Now, calculate ∆ϕ for perturbations of the form ∆V2(r) = δ2/r
2 and ∆V3(r) = δ3/r

3

and show that, expressed in terms of a and ε of the unperturbed ellipse, it assumes the
following values, respectively:

∆2ϕ = −2πδ2mL−2 = −2π
δ2/α

a(1− ε2)
, (5a)

∆3ϕ = −6παδ3m
2L−4 = −6π

δ3/α

a2(1− ε2)2
. (5b)

Note: Before taking the partial derivative with respect to L the parameters p and ε

have to be expressed in terms of L und E by using (2b).

Problem 2

For a time-independent mass distribution ρ(!x) the Newtonian gravitational potential is
also time independent and given by

φ(!x) = −G

!

R3

d3x ′ ρ(!x ′)

‖!x− !x ′‖ . (6)

(Notation: We distinguish between the gravitational potential φ, the physical dimen-
sion of which is that of velocity-squared, and potential energy V = mφ of a mass m
in the gravitational potential φ, the physical dimension of which is that of energy.)

We assume that the distance to the source is much bigger than the diameter of the
source and that we have chosen the origin of our coordinate system somewhere within
the source (we will later choose it to be the centre-of-mass). We can then expand the
1/‖!x−!x ′‖ in the integrand up to, and including, the second powers in the dimension-
less ratios !x ′/r, where r := ‖!x‖.

Show that this leads to ( 2
= indicates equality up to, and including, the second expansion

order)

φ(!x)
2
= −G

$
M

r
+

naD
a

r2
+

1

2

(nanb −
1
3δab)Q

ab

r3

%
, (7a)

where 2
= indicates equality up to, and including, the second order, where na := xa/r

and na := δabn
b = na (here upper-case and lower-case notation is kept for consis-

tency with summation convention) and where

M :=

!

R3

d3x ρ(!x) , (7b)

Da :=

!

R3

d3x ρ(!x) xa , (7c)

Qab :=

!

R3

d3x ρ(!x)
%
3xaxb − r2δab

&
, (7d)
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are the total mass, dipole-, and quandrupole-moments of the mass distribution, respec-
tively.

Show that, as long as M ∕= 0, it is always possible to choose the coordinate centre in
such a way that the dipole moment vanishes.

Problem 3

In this exercise we wish to apply (7) to a mass distribution that is invariant under the
rotation about single axis, say the x3-axis.

Show that in this case the dipole vector !D always points parallel to the axis of symme-
try and that we may always choose the origin of coordinates on that axis such that !D
vanishes. We shall from now on make that choice.

Show further that the quadrupole components are given by the matrix

{Qab} = diag
%
Q,Q,−2Q

&
, (8)

where Q := Q11 = Q22. (Tip: That follows from simple symmetry arguments without
any calculations.)

Use now (7a) to show that the gravitational potential outside the mass distribution is
given in the “quadrupole approximation” (i.e. including mass-multipoles up to, and
including, the quadrupole) by

φ(r, θ)
2
= −G

M

r

(
1+ J2

R2

2r2
(1− 3 cos2 θ)

)
. (9)

Here θ is the polar angle and we used polar coordinates for the integration; not that
na = (sin θ cosϕ, sin θ sinϕ, cos θ). Further, we introduced the dimensionless pa-
rameter

J2 :=
Q

MR2
, (10)

where R is some characteristic length of the mass distribution which one introduces
in order to have dimensionless quantities. Note that (9) does not depend on R, as it
cancels out.

Problem 4

We consider a special example of an axisymmetric mass distribution, given by a ho-
mogeneously filled interior of the spheroid

S(a, b) :=

"
!x ∈ R3 :

x2 + y2

a2
+

z2

b2
= 1

#
. (11)

Here we wrote (x, y, z) instead of (x1, x2, x3). Let B(a, b) denote the 3-dimensional
interior region bounded by S(a, b). The constant mass density in B(a, b) is denoted
by ρ0.
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Show by direct computation that the total mass is

M =

!

B(a,b)
d3x ρ(!x) = ρ0Vol

%
B(a, b)

&
= ρ0

4π

3
a2b . (12)

We know from the previous exercise that the quadrupole tensor of the given mass
distribution has the form (8). Show by direct computation that

Q

M
=

a2 − b2

5
. (13)

Note that spheroids with a > b are called ‘oblate’ and those with a < b are called
‘prolate’. Hence oblate homogeneously filled spheroids have positive Q (and hence
positive J2) and prolate homogeneously filled spheroids have negative Q (and hence
negative J2).

Let us focus attention to oblate spheroids, i.e. the case a > b. The intersection of
S(a, b) with any 2-dimensional plane containing the z-axis, e.g., the y = 0 plane, is
an ellipse with semi-major axis a and semi-minor axis b. Hence its eccentricity is
ε =

*
1− (b/a)2. Hence, taking as characteristic length-scale R in the definition of

J2 the equatorial radius a, we get

J2 =
ε2

5
. (14)

Note that for ellipses and spheroids instead of the eccentricity one often uses the ellip-
ticity, that is also called flattening, and which is defined by f := 1− (b/a). Hence we
can rewrite J2 in terms of the “flattening” f as

J2 =
2

5
f(1− f/2) ≈ 2

5
f , (15)

where the last ≈ is meant to be the leading-order (here linear) approximation for small
f.

Use (15) to estimate J2 for the Sun using recent values for f that you are asked to find
yourself. https://en.wikipedia.org/wiki/Sun is an obvious first source,
but find other ones and compare.

Problem 5

Consider the motion of a test mass in the potential (9) and show, that if it starts initially
in the equatorial plane θ = π/2 and tengentially to it, it will always remain within it for
all time. You can show this without any calculation by using a “symmetry argument”,
but beware: the argument has to be mathematically precise!

We restrict attention to orbits in the equatorial plane and use (5) to calculate (∆ϕ)Quad
caused by the quadrupole moment. (Why may you use (5) even though it was derived
for spherically-symmetric potentials only?) Show that

(∆ϕ
&

Quad = 3π J2

(
R

a(1− ε2)

)2
. (16)
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Note: Here a and ε are the semi-major axis and the eccentricity of the test-particles’s
orbit and R is the equatorial radius of the sun.

How big would J2 have to be in order to explain the residual (i.e. not caused by
other planets, like Venus, Earth, and Jupiter) perihelion shift of Mercury, which is
approximately 43 arc-seconds per century? Compare this with the estimate for J2
obtained in exercise 4. Would you think the simple (homogeneous) solar model used
here leads to an over- or underestimation of the Sun’s quadrupole-moment contribution
to Mercury’s perihelion shift?

Tip: Note that (16) is the perihelion shift “per revolution”, wheres the 43 arc-seconds
for Mercury refer to a whole century. For the numerical values you may take

R = 695, 700 km , (17a)

a = 57, 909, 050 km , (17b)

ε = 0.205630 . (17c)
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