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Problem 1

The energy-momentum tensor of a perfect fluid is given by

Tµν = ρuµuν +
!
−ηµν + uµuν/c2

"
p , (1)

where ρ denotes the mass-density and p the pressure in the fluid’s rest-frame, and u is
the fluid’s four-velocity.

Show that (1) describes a system which in the reference frame set by u has the follow-
ing properties:

1) The energy-density is ρc2;
2) the energy-current density vanishes;
3) the momentum-density vanishes;
4) the momentum-current density is isotropic.

In particular, the material described by (1) does not support shear forces and does not
conduct heat. How do you see that?

Problem 2

Show that the condition of vanishing divergence applied to (1) can be written in the
following form:

∇µT
µν = u̇ν

#
ρ+ p/c2

$
+
#
−ηµν + uµuν/c2

$
∇µp

+ uν
%
∇µ

#
uµ(ρ+ p/c2)

$
− ṗ/c2

&
.

(2)

An overdot always denoted the derivative with respect to proper time of the integral
curve of u, i.e., u̇ν := uµ∇µu

ν and ṗ := uµ∇µp.

Show that ∇µT
µν = 0 is equivalent to

u̇ν
#
ρ+ p/c2

$
+
#
−ηµν + uµuν/c2

$
∇µp = 0 , (3a)

∇µ

#
uµρ

$
+ (p/c2)∇µu

µ = 0 . (3b)

Consider the case of vanishing pressure and show that then ρu is a conserved current
and that the integral lines of u are geodesics in Minkowski space. (Tip: The integral
curves of a vector field are geodesics if and only if the derivative of the vector field
with respect to itself vanishes.)
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How do you interpret the fact that, according to (3b), the rest-mass current ρu is not
preserved if the pressure is non-zero and the fluid is not incompressible (incompress-
ibility here means that ∇µu

µ = 0)?

(Tip: You may assume that the calculations concerning the divergence operation take
place in flat Minkowski space, but they continue to be valid verbatim in GR if you
interpret the ∇ as a covariant derivative.)

Problem 3

(Attention: In this exercise we will use distributions. δ(4) denotes the Dirac-
distribution in Minkowski space - with respect to its Lebesgue measure.)

The four-dimensional current-density of a point charge is e which moves along the
world-line z(τ) in Minkowski space (τ is its eigentime) is given by:

jµ(x) = e

∫
dτ δ(4)

#
x− z(τ)

$
żµ(τ) . (4)

Show that ∇µj
µ = 0 (in the sense of distributions).

The energy-momentum tensor of a point mass m moving likewise along z(τ) is:

Tµν(x) = m

∫
dτ δ(4)

#
x− z(τ)

$
żµ(τ)żν(τ) . (5)

Show that ∂µTµν = 0 (in the sense of distributions) holds, if and only if the wordline
satisfies z̈µ = 0, i.e. is a geodesic in Minkowski space.

Problem 4

Let (V,η) be a real n > 2 dimensional vector space with Lorentz metric; that is,
η is a non-degenerate symmetric bilinear form of signature (1,−1, · · · ,−1)). Let
further T : V → V be a linear map that is symmetric with respect to η; that is,
η(Tv,w) = η(v, Tw), for all v,w ∈ V . A vector v ∈ V − {0} is called timelike,
spacelike, and lightlike if η(v, v) is bigger, smaller, and equal to zero, respectively.

Show that if v ∈ V is an eigenvector for T then its (n − 1)-dimensional orthogonal
complement {v}⊥ := {w ∈ V : η(w, v) = 0} ⊂ V is invariant under T (as a set, not
pointwise). What does that imply if v is lightlike?

Show further that there exists a η-orthogonal basis of V diagonalising T , if and only if
T admits a timelike eigenvector.

Now apply this result to symmetric energy-momentum tensors. How do you interpret
the requirement that T (regarded as linear map V → V) possesses a timelike eigenvec-
tor? Is this always the case? How would you expect the energy-momentum tensor of
a plane electromagnetic wave in vacuum to look like?
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Problem 5

Let T : V → V again be an energy momentum tensor. The following conditions,
which are meant to hold for all timelike vectors v, are collectively known as “energy
conditions”:

η(v, Tv) ≥ 0 (weak energy-condition), (6a)

η(v, Tv)− 1
2η(v, v)trace(T) ≥ 0 (strong energy-condition), (6b)

η(Tv, Tv) ≥ 0 ≤ η(v, Tv) (energy-dominance condition). (6c)

Interpret (6a) and (6c) as restrictions on the image of timelike vectors under T .
Likewise, interpret (6b) as restriction on the image of the linear map T ′ := T −
1
2 trace(T) idv.

Show that for an ideal fluid (compare (1)) these conditions are equivalent to

• weak energy-condition:

ρ ≥ 0 and p ≥ −ρc2 , (7a)

• strong energy-condition:

p ≥
{
−ρc2/3 if ρ ≥ 0

−ρc2 if ρ < 0,
(7b)

• energy-dominance condition:

ρ ≥ 0 and − ρc2 ≤ p ≤ ρc2 . (7c)

Problem 6

Show that the set V+ = {v ∈ V : η(v, v) > 0} ⊂ V of timelike vectors has two
connected components, Z = V

↑
+∪V

↓
+. If n ∈ V

↑
+ is a chosen reference vector (defining

the “future direction”) und v ∈ Z, then v ∈ V
↑
+ ⇔ η(n, v) > 0.

Show further that the condition (6c) of energy-dominance is equivalent to the condition
that T(V↑

+) ⊆ V
↑
+ and T(V↓

+) ⊆ V
↓
+ and that this will extend to the corresponding

statements for the closures V̄↑
+ and V̄

↓
+.

Let {e0, e1, · · · , en−1} be a η-orthonormal basis of V with timelike e0. Show that the
condition of energy-dominance implies the following inequalities:

T00 ≥ |Tab| (8)

for all a, b ∈ {0, 1, · · · , n− 1}, where Tab := η(ea, Teb).
(Tip: Consider expressions of the form η

#
e0±ea, T(e0±eb)

$
and η

#
e0, T(e0±ea)

$
.)

Can one conclude that the validity of (8) in some orthonormal basis implies that T
satisfies energy-dominance?
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