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Problem 1
The energy-momentum tensor of a perfect fluid is given by

™ =purtu + (—n“v + u“uv/cz) P, (D
where p denotes the mass-density and p the pressure in the fluid’s rest-frame, and u is

the fluid’s four-velocity.

Show that (1) describes a system which in the reference frame set by u has the follow-
ing properties:

1) The energy-density is pc?;

2) the energy-current density vanishes;

3) the momentum-density vanishes;

4) the momentum-current density is isotropic.

In particular, the material described by (1) does not support shear forces and does not
conduct heat. How do you see that?

Problem 2

Show that the condition of vanishing divergence applied to (1) can be written in the
following form:
VT =1 (p+p/c?) + (—n¥ +utu¥/c?) V,p

2
+uY [Vu(u“(p +p/c?) —p/cz} . @

An overdot always denoted the derivative with respect to proper time of the integral
curve of u, i.e., ¥ := u*V uY and p :=utV p.

Show that V|, T* = 0 is equivalent to

W (p+p/ct) + (—m* +utu¥/c?)Vp =0, (3a)
Vi(utp) + (p/c?) Vut =0. (3b)

Consider the case of vanishing pressure and show that then pu is a conserved current
and that the integral lines of u are geodesics in Minkowski space. (Tip: The integral
curves of a vector field are geodesics if and only if the derivative of the vector field
with respect to itself vanishes.)

Introduction into GR, SS 2020 1/3
qig.itp.uni-hannover.de/~giulini/



How do you interpret the fact that, according to (3b), the rest-mass current pu is not
preserved if the pressure is non-zero and the fluid is not incompressible (incompress-
ibility here means that V,,u®* = 0)?

(Tip: You may assume that the calculations concerning the divergence operation take
place in flat Minkowski space, but they continue to be valid verbatim in GR if you
interpret the V as a covariant derivative.)

Problem 3

(Attention: In this exercise we will use distributions. §* denotes the Dirac-
distribution in Minkowski space - with respect to its Lebesgue measure.)

The four-dimensional current-density of a point charge is e which moves along the
world-line z(T) in Minkowski space (T is its eigentime) is given by:

j*(x) = eJdes(‘” (x —z(1))2*(7). 0))

Show that V,;j* = 0 (in the sense of distributions).

The energy-momentum tensor of a point mass m moving likewise along z(T) is:
T (x) = m J ats® (x — z(1)) 2(1)2" (1) . 5)

Show that 9, T*Y = 0 (in the sense of distributions) holds, if and only if the wordline
satisfies ZH = 0, i.e. is a geodesic in Minkowski space.

Problem 4

Let (V,n) be a real n > 2 dimensional vector space with Lorentz metric; that is,
1 is a non-degenerate symmetric bilinear form of signature (1,—1,---,—1)). Let
further T : V — V be a linear map that is symmetric with respect to 1; that is,
n(Tv,w) = n(v, Tw), for all vyw € V. A vector v € V — {0} is called timelike,
spacelike, and lightlike if (v, V) is bigger, smaller, and equal to zero, respectively.

Show that if v € V is an eigenvector for T then its (n — 1)-dimensional orthogonal
complement (v} := {w € V : j(w,v) = 0} C V is invariant under T (as a set, not
pointwise). What does that imply if v is lightlike?

Show further that there exists a n-orthogonal basis of V diagonalising T, if and only if
T admits a timelike eigenvector.

Now apply this result to symmetric energy-momentum tensors. How do you interpret
the requirement that T (regarded as linear map V — V) possesses a timelike eigenvec-
tor? Is this always the case? How would you expect the energy-momentum tensor of
a plane electromagnetic wave in vacuum to look like?
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Problem 5

Let T : V — V again be an energy momentum tensor. The following conditions,
which are meant to hold for all timelike vectors v, are collectively known as “energy
conditions”:

nv, v) >0 (weak energy-condition), (6a)
nv, w) — %n(v,v)trace(T) >0 (strong energy-condition), (6b)
n(Tv, Tv) > 0 <n(v, v) (energy-dominance condition). (6¢)

Interpret (6a) and (6¢) as restrictions on the image of timelike vectors under T.
Likewise, interpret (6b) as restriction on the image of the linear map T’ := T —
1ztrace(T) idy.

Show that for an ideal fluid (compare (1)) these conditions are equivalent to

e weak energy-condition:

p>0 and p> —pcz, (7a)

e strong energy-condition:

2 .
—pc“/3 ifp>0
p>{ T (7b)
—pc if p <0,
e energy-dominance condition:
p>0 and —opc’<p < pc?. (7¢)

Problem 6

Show that the set V, = {v € V : n(v,v) > 0} C V of timelike vectors has two
connected components, Z = Vl UV}F. Ifn e VJTr is a chosen reference vector (defining
the “future direction”) und v € Z, thenv € Vl S n(n,v) > 0.

Show further that the condition (6¢) of energy-dominance is equivalent to the condition
that T(VD - VI and T(V}r) - V}r and that this will extend to the corresponding
statements for the closures V| and V.

Let {eg, €1, - -, en_1} be a n-orthonormal basis of V with timelike ey. Show that the
condition of energy-dominance implies the following inequalities:

Too > [Tapl (8)

forall a,b € {0,1,--- ,n — 1}, where Tqp :=1(eq, Tep).
(Tip: Consider expressions of the formn (eo +eq, T(egx eb)) andn (eo, T(ep+ ea)) )

Can one conclude that the validity of (8) in some orthonormal basis implies that T
satisfies energy-dominance?
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