Exercises for the lecture on

Introduction into General Relativity

by Domenico GiUlini

Sheet 4

Problem 1

Consider a space-time metric of the form

$$
\begin{equation*}
g=\left(1+\frac{2 \phi(\vec{x})}{c^{2}}\right) c^{2} d t \otimes d t-d \vec{x} \dot{\otimes} d \vec{x} \tag{1}
\end{equation*}
$$

where $\vec{x}=(x, y, z)$.
Show that the geodesic equations for the spatial coordinates $\vec{x} \circ \gamma=\vec{z}$ are given by

$$
\begin{equation*}
\ddot{z}^{\mathrm{a}}(\tau)=-\dot{\mathrm{t}}^{2}(\tau) \phi_{, \mathrm{a}}(\vec{z}(\tau)), \tag{2}
\end{equation*}
$$

where $\phi_{a}:=\partial \phi / \partial x^{a}$ and a dot denotes the derivative with repect to eigentime (or an affinely related parameter).
Use the geodesic equation for the time component $t(\tau)$ to eliminate \dot{t} as well as to replace the derivatives with respect to τ by derivatives with respect to t (denoted by a dash). Show that this leads to (suppressing the argument t for \vec{z} and $\vec{z}(t)$ for ϕ)

$$
\begin{equation*}
\vec{z}^{\prime \prime}=-\vec{\nabla} \phi+2\left(1+\frac{2 \phi}{\mathrm{c}^{2}}\right)^{-1} \frac{\left(\vec{z}^{\prime} \cdot \vec{\nabla} \phi\right) \vec{z}^{\prime}}{\mathrm{c}^{2}} . \tag{3}
\end{equation*}
$$

Note that this leads to the Newtonian equations of motion in a gravitational potential ϕ if terms v^{2} / c^{2} are neglected. Note also that "space" (i.e. the sections $\mathrm{t}=$ const. in spacetime) is flat, and yet the spatial trajectories are not straight lines. How does that fit with the semi-popular picture of GR as explaining gravity as "curvature"?

Aufgabe 2

We consider the length-functional for timelike curves in the metric (1):

$$
\begin{align*}
\mathrm{L}\left(\lambda_{1}, \lambda_{2}\right) & =\int_{\lambda_{1}}^{\lambda_{2}} \mathrm{~d} \lambda \sqrt{g_{\alpha \beta}(z(\lambda)) \dot{z}^{\alpha}(\lambda) \dot{z}^{\beta}(\lambda)} \\
& =\int_{\lambda_{1}}^{\lambda_{2}} \mathrm{~d} \lambda \sqrt{\left(1+\frac{2 \phi(\vec{z}(\mathrm{t}))}{\mathrm{c}^{2}}\right) \mathrm{c}^{2} \dot{t}^{2}-\dot{\vec{z}} \cdot \dot{\vec{z}}} . \tag{4}
\end{align*}
$$

This is invariant under reparametrisations of the curve so that we may just as well use t as parameter along the curve. Then we get

$$
\begin{align*}
\mathrm{L}\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right) & =\int_{\mathrm{t}_{1}}^{\mathrm{t}_{2}} c d \mathrm{t} \sqrt{\left(1+\frac{2 \phi(\vec{z}(\mathrm{t}))}{\mathrm{c}^{2}}\right)-\frac{\vec{v}^{2}}{\mathrm{c}^{2}}} \tag{5}\\
& =\mathrm{c}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)+\mathrm{c} \int_{\mathrm{t}_{2}}^{\mathrm{t}_{2}} \mathrm{dt}\left(\frac{\phi(\vec{z}(\mathrm{t}))}{\mathrm{c}^{2}}-\frac{\vec{v}^{2}}{2 \mathrm{c}^{2}}\right)+\mathrm{O}(4),
\end{align*}
$$

where \vec{v} denotes $\mathrm{d} \vec{z} / \mathrm{dt}$, i.e. the velocity with respect to Newtonian time. In the second line we expanded the square-root in terms of v / c and ϕ / c and dropped all terms at fourth and higher order.

We now specialise this to the simple potential $\phi(\vec{\chi})=\mathrm{gz}$ mit $\mathrm{g}>0$, corresponding to a homogeneous Newtonian gravitational field $\vec{g}=-\vec{\nabla} \phi=-g \vec{e}_{z}$. We consider two identically constructed clocks, U and U^{\prime}, where U stays at rest in the origin of our coordinate system and U^{\prime} is released at time $\mathrm{t}_{1}=0$ with initial velocity v from the origin in a vertical and upward direction (i.e. along the positive z-direction). The spatial trajectory of U^{\prime} obeys (3), in which you may neglect the term $\propto \mathrm{c}^{-2}$ (it will only contribute corrections to order c^{-4} in the length functional, which we consistently neglect).

Assume the two clocks to be synchronised to $\tau=0$ at the moment $\mathrm{t}_{1}=0$ they depart. Calculate the difference in their eigentime at the moment $t_{2}>0$ they meet again at the origin, i.e. after U^{\prime} has reached its maximal height and fallen back to the spatial point it started from. Use formula (5) and neglect all terms of fourth and higher power in $1 / \mathrm{c}$. Do you understand - as a matter of principle and before doing any calculation - which of the two clocks should show a larger value of eigentime upon their second encounter, corresponding to that clock having "aged more" than the other one? Try to give an intuitive and a mathematical argument!

Problem 3

Consider a general spacetime metric which for suitable local coordinates ($\mathrm{x}^{0}=$ ct, x^{1}, x^{2}, χ^{3}) takes a form where all coefficients are independent of t :

$$
\begin{equation*}
\mathrm{g}=\mathrm{g}_{00}(\vec{x}) \mathrm{d} x^{0} \otimes \mathrm{~d} x^{0}+\mathrm{g}_{\mathrm{a} 0}(\vec{x})\left(\mathrm{d} x^{0} \otimes \mathrm{~d} x^{\mathrm{a}}+\mathrm{d} x^{\mathrm{a}} \otimes \mathrm{~d} x^{0}\right)+\mathrm{g}_{\mathrm{ab}}(\vec{x}) \mathrm{d} x^{\mathrm{a}} \otimes \mathrm{~d} x^{\mathrm{b}} . \tag{6}
\end{equation*}
$$

We assume $g_{00}>0$. Show that an alternative way to write this is

$$
\begin{equation*}
g=\phi^{2}(\vec{x}) \theta \otimes \theta-h_{a b}(\vec{x}) d x^{a} \otimes d x^{b} \tag{7a}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi=\sqrt{g_{00}}, \quad \theta:=d x^{0}+A_{a} d x^{a} \text { with } A_{a}:=g_{0 a} / g_{00}, \quad h_{a b}:=-g_{a b}+\frac{g_{0 a} g_{0 b}}{g_{00}} . \tag{7b}
\end{equation*}
$$

Show that $K=\partial / \partial x^{0}$ is a timelike Killing field, i.e. that $L_{K} g=0$. (Tip: Apply L_{K} to the expression on the r.h.s. of (6), using the Leibniz property and that L_{K} commutes with d.)

Consider the one-form $K^{\downarrow}:=g(K, \cdot)$ and show that $K^{\downarrow}=\phi^{2} \theta$ and

$$
\begin{equation*}
\mathrm{K}^{\downarrow} \wedge \mathrm{dK}^{\downarrow}=\phi^{4} \theta \wedge \mathrm{dA} \tag{8}
\end{equation*}
$$

Use this to show

$$
\begin{equation*}
\mathrm{K}^{\downarrow} \wedge \mathrm{dK}^{\downarrow}=0 \Leftrightarrow \mathrm{dA}=0 \Leftrightarrow \partial_{\mathrm{a}}\left(\frac{g_{0 b}}{g_{00}}\right)-\partial_{\mathrm{b}}\left(\frac{g_{0 \mathrm{a}}}{g_{00}}\right)=0 \tag{9}
\end{equation*}
$$

Use this to prove that if $K^{\downarrow} \wedge \mathrm{dK}^{\downarrow}=0$ there exist local coordinates in which all $g_{\mu \nu}$ are independent of time and $\mathrm{g}_{0 \mathrm{a}}=0$. (Tip: Use $\mathrm{dA}=0$ and Poincaré's Lemma to show that there exists a local function f such that $A=\mathrm{df}$. Now redefine the time coordinate by $\chi^{0} \mapsto \chi^{0}+\mathrm{f}$.)

Problem 4

Let u be a four-velocity field (i.e. a timelike vector field with normalisation $g(u, u)=$, c^{2}). This may, e.g., be thought of as the four-velocity of a fluid. Its associated acceleration field is $a:=\nabla_{u} u$ (in components: $a^{\alpha}=u^{\beta} \nabla_{\beta} u^{\alpha}$).
We define the tensor

$$
\begin{equation*}
\pi^{\alpha \beta}:=g^{\alpha \beta}-\frac{u^{\alpha} u^{\beta}}{c^{2}} \tag{10}
\end{equation*}
$$

Show that $\pi_{\gamma}^{\alpha}:=\pi^{\alpha \beta} g_{\beta \gamma}$ defines in each tangent space the orthogonal projection into the orthogonal complement of u.

Next we define the following tensors associated to u :

$$
\begin{align*}
\omega_{\alpha \beta} & :=\frac{1}{2} \pi_{\alpha}^{\mu} \pi_{\beta}^{v}\left(\nabla_{\mu} u_{v}-\nabla_{\nu} u_{\mu}\right) \tag{11a}\\
\theta_{\alpha \beta} & :=\frac{1}{2} \pi_{\alpha}^{\mu} \pi_{\beta}^{v}\left(\nabla_{\mu} u_{v}+\nabla_{\nu} u_{\mu}\right) \tag{11b}\\
\theta & :=\pi^{\alpha \beta} \theta_{\alpha \beta} \tag{11c}\\
\sigma_{\alpha \beta} & :=\theta_{\alpha \beta}-\frac{1}{3} \pi_{\alpha \beta} \theta \tag{11d}
\end{align*}
$$

These have, respectively, the following names: "vorticity", "shear", "expansion" and "trace-free shear" of the fluid.

Show that

$$
\begin{equation*}
\nabla_{\alpha} u_{\beta}=\omega_{\alpha \beta}+\sigma_{\alpha \beta}+\frac{1}{3} \pi_{\alpha \beta} \theta+\frac{u_{\alpha} a_{\beta}}{c^{2}} \tag{12}
\end{equation*}
$$

Show (or argue) that all four terms on the right-hand side are pairwise orthogonal; for example. $\sigma_{\alpha \beta} \omega^{\alpha \beta}=0$.

Problem 5

We continue the notation from the previous exercise. Show that the rate of change of the expansion θ with respect to proper time along the integral curve of u, i.e. $\dot{\theta}=\nabla_{u} \theta$, obeys the following relation, known as Raychaudhuri equation:

$$
\begin{equation*}
\dot{\theta}=-\sigma^{2}-\frac{1}{3} \theta^{2}-R_{\alpha \beta} u^{\alpha} u^{\beta}+\omega^{2}+\nabla_{\beta} a^{\beta} \tag{13}
\end{equation*}
$$

where $\omega^{2}:=\omega_{\alpha \beta} \omega^{\alpha \beta}$ and $\sigma^{2}:=\sigma_{\alpha \beta} \sigma^{\alpha \beta}$.
(Tip: Recall that generally $u^{\beta} \nabla_{\alpha} u_{\beta}=0$. Start by showing $\theta=\nabla_{\alpha} u^{\alpha}$; then consider $\dot{\theta}=u^{\alpha} \nabla_{\alpha} \nabla_{\beta} u^{\beta}$ and commute the covariant derivatives $\nabla_{\alpha} \nabla_{\beta}$, thereby picking up a curvature (Ricci) term. Then rewrite the term $\mathfrak{u}^{\alpha} \nabla_{\beta} \nabla_{\alpha} u^{\beta}$ into $\nabla_{\beta}\left(u^{\alpha} \nabla_{\alpha} u^{\beta}\right)-$ $\nabla_{\beta} \mathfrak{u}^{\alpha} \nabla_{\alpha} \mathfrak{u}^{\beta}$ and use (12) to evaluate the last term.)

Problem 6

Apply the Raychaudhuri equation for the following special situation:

1. the vector field is u "geodesic", i.e. satisfies $a^{\alpha}=0$;
2. the vector field u is "irrotational", i.e. satisfies $\omega_{\alpha \beta}=0$;
3. the metric g satisfies Einstein's equations without cosmological constant and with an energy-momentum tensor that satisfies the strong energy-condition.

Show that this implies

$$
\begin{equation*}
\dot{\theta} \leq-\frac{1}{3} \theta^{2} . \tag{14}
\end{equation*}
$$

Now use this inequality to prove the following result: Let $\gamma(\tau)$ be an integral curve of the vector field \mathfrak{u}; i.e. $\dot{\gamma}=\mathfrak{u} \circ \gamma$. Suppose there exists a point $\gamma\left(\tau_{*}\right)$ on the integral curve at which θ is properly negative:

$$
\begin{equation*}
\theta\left(\gamma\left(\tau_{*}\right)\right)=\theta_{*}<0 . \tag{15}
\end{equation*}
$$

Then θ diverges to $(-\infty)$ within a proper time interval of length $3 /\left|\theta_{*}\right|$ after τ_{*}.

