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Problem 1

Consider a space-time metric of the form

g =

!
1+

2φ(!x)

c2

"
c2 dt⊗ dt− d!x ⊗̇d!x , (1)

where !x = (x, y, z).

Show that the geodesic equations for the spatial coordinates !x ◦ γ = !z are given by

z̈a(τ) = −ṫ2(τ)φ,a(!z(τ)) , (2)

where φ,a := ∂φ/∂xa and a dot denotes the derivative with repect to eigentime (or an
affinely related parameter).

Use the geodesic equation for the time component t(τ) to eliminate ṫ as well as to
replace the derivatives with respect to τ by derivatives with respect to t (denoted by a
dash). Show that this leads to (suppressing the argument t for !z and !z(t) for φ)

!z ′′ = −!∇φ+ 2

!
1+

2φ

c2

"−1 (!z ′ · !∇φ) !z ′

c2
. (3)

Note that this leads to the Newtonian equations of motion in a gravitational potential
φ if terms v2/c2 are neglected. Note also that “space” (i.e. the sections t = const. in
spacetime) is flat, and yet the spatial trajectories are not straight lines. How does that
fit with the semi-popular picture of GR as explaining gravity as “curvature”?

Aufgabe 2

We consider the length-functional for timelike curves in the metric (1):

L(λ1, λ2) =

∫λ2

λ1

dλ

#
gαβ

$
z(λ)

%
żα(λ)żβ(λ)

=

∫λ2

λ1

dλ

&!
1+

2φ(!z(t))

c2

"
c2ṫ2 − !̇z · !̇z .

(4)
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This is invariant under reparametrisations of the curve so that we may just as well use
t as parameter along the curve. Then we get

L(t1, t2) =

∫ t2

t1

cdt

&!
1+

2φ(!z(t))

c2

"
−

!v2

c2

= c(t2 − t1) + c

∫ t2

t2

dt

!
φ(!z(t))

c2
−

!v2

2c2

"
+O(4) ,

(5)

where!v denotes d!z/dt, i.e. the velocity with respect to Newtonian time. In the second
line we expanded the square-root in terms of v/c and φ/c and dropped all terms at
fourth and higher order.

We now specialise this to the simple potential φ(!x) = gz mit g > 0, corresponding
to a homogeneous Newtonian gravitational field !g = −!∇φ = −g!ez. We consider
two identically constructed clocks, U and U ′, where U stays at rest in the origin of
our coordinate system and U ′ is released at time t1 = 0 with initial velocity v from
the origin in a vertical and upward direction (i.e. along the positive z-direction). The
spatial trajectory of U ′ obeys (3), in which you may neglect the term ∝ c−2 (it will
only contribute corrections to order c−4 in the length functional, which we consistently
neglect).

Assume the two clocks to be synchronised to τ = 0 at the moment t1 = 0 they depart.
Calculate the difference in their eigentime at the moment t2 > 0 they meet again at
the origin, i.e. after U ′ has reached its maximal height and fallen back to the spatial
point it started from. Use formula (5) and neglect all terms of fourth and higher power
in 1/c. Do you understand - as a matter of principle and before doing any calculation
- which of the two clocks should show a larger value of eigentime upon their second
encounter, corresponding to that clock having “aged more” than the other one? Try to
give an intuitive and a mathematical argument!

Problem 3

Consider a general spacetime metric which for suitable local coordinates (x0 =
ct, x1, x2, x3) takes a form where all coefficients are independent of t:

g = g00(!x)dx
0 ⊗ dx0 + ga0(!x)(dx

0 ⊗ dxa + dxa ⊗ dx0) + gab(!x)dx
a ⊗ dxb . (6)

We assume g00 > 0. Show that an alternative way to write this is

g = φ2(!x) θ⊗ θ− hab(!x)dx
a ⊗ dxb , (7a)

where

φ =
√
g00 , θ := dx0 +Aadx

a with Aa := g0a/g00 , hab := −gab +
g0ag0b
g00

.

(7b)
Show that K = ∂/∂x0 is a timelike Killing field, i.e. that LKg = 0. (Tip: Apply LK
to the expression on the r.h.s. of (6), using the Leibniz property and that LK commutes
with d.)
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Consider the one-form K↓ := g(K, ·) and show that K↓ = φ2θ and

K↓ ∧ dK↓ = φ4θ∧ dA . (8)

Use this to show

K↓ ∧ dK↓ = 0 ⇔ dA = 0 ⇔ ∂a

!
g0b
g00

"
− ∂b

!
g0a
g00

"
= 0 , (9)

Use this to prove that if K↓∧dK↓ = 0 there exist local coordinates in which all gµν are
independent of time and g0a = 0. (Tip: Use dA = 0 and Poincaré’s Lemma to show
that there exists a local function f such that A = df. Now redefine the time coordinate
by x0 &→ x0 + f.)

Problem 4

Let u be a four-velocity field (i.e. a timelike vector field with normalisation g(u, u, ) =
c2). This may, e.g., be thought of as the four-velocity of a fluid. Its associated acceler-
ation field is a := ∇uu (in components: aα = uβ∇βu

α).

We define the tensor

παβ := gαβ −
uαuβ

c2
. (10)

Show that πα
γ := παβgβγ defines in each tangent space the orthogonal projection into

the orthogonal complement of u.

Next we define the following tensors associated to u:

ωαβ := 1
2 π

µ
α π

ν
β(∇µuν −∇νuµ) , (11a)

θαβ := 1
2 π

µ
α π

ν
β (∇µuν +∇νuµ) , (11b)

θ := παβθαβ , (11c)

σαβ := θαβ − 1
3παβθ (11d)

These have, respectively, the following names: “vorticity”, “shear”, “expansion” and
“trace-free shear” of the fluid.

Show that
∇αuβ = ωαβ + σαβ + 1

3παβ θ+
uαaβ

c2
. (12)

Show (or argue) that all four terms on the right-hand side are pairwise orthogonal; for
example. σαβω

αβ = 0.

Problem 5

We continue the notation from the previous exercise. Show that the rate of change of
the expansion θ with respect to proper time along the integral curve of u, i.e. θ̇ = ∇uθ,
obeys the following relation, known as Raychaudhuri equation:

θ̇ = −σ2 − 1
3θ

2 − Rαβu
αuβ +ω2 +∇βa

β (13)
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where ω2 := ωαβω
αβ and σ2 := σαβσ

αβ.

(Tip: Recall that generally uβ∇αuβ = 0. Start by showing θ = ∇αu
α; then consider

θ̇ = uα∇α∇βu
β and commute the covariant derivatives ∇α∇β, thereby picking up

a curvature (Ricci) term. Then rewrite the term uα∇β∇αu
β into ∇β(u

α∇αu
β) −

∇βu
α∇αu

β and use (12) to evaluate the last term.)

Problem 6

Apply the Raychaudhuri equation for the following special situation:

1. the vector field is u “geodesic”, i.e. satisfies aα = 0;

2. the vector field u is “irrotational”, i.e. satisfies ωαβ = 0;

3. the metric g satisfies Einstein’s equations without cosmological constant and
with an energy-momentum tensor that satisfies the strong energy-condition.

Show that this implies
θ̇ ≤ − 1

3θ
2 . (14)

Now use this inequality to prove the following result: Let γ(τ) be an integral curve of
the vector field u; i.e. γ̇ = u ◦ γ. Suppose there exists a point γ(τ∗) on the integral
curve at which θ is properly negative:

θ
$
γ(τ∗)

%
= θ∗ < 0 . (15)

Then θ diverges to (−∞) within a proper time interval of length 3/|θ∗| after τ∗.
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