
Exercises for the lecture on

Introduction into General Relativity
by DOMENICO GIULINI

Sheet 5

Problem 1

Let u be a four-velocity field (i.e. a timelike vector field with normalisation g(u, u, ) =
c2), just like in Problem 4 of Sheet 4. Our notation here will be as there. Let u↓ :=
g(u, ·) = uα dx

α be its corresponding one-form and ω := 1
2ωαβdx

α ∧ dxβ the
vorticity two-form, where ωαβ is defined like on sheet 4. Show that

ω =
1

2c2
iu(u

↓ ∧ du↓) (1)

where iu is the map from k-forms to k − 1 forms obtained by contracting the first
tensor-factor with u.

Problem 2

Consider Minkowski in a global affine chart (x0 = ct, x1 = x, x2 = y, x3 = z) in
which its metric reads

g = c2dt⊗ dt− δab dx
a ⊗ dxb . (2)

Consider the following vector field:

K :=
∂

∂t
+ ε c

ab Ωaxb
∂

∂xc
. (3)

Here εabc equals 1 or −1 depending on whether (abc) is an even or odd permutation
of (123) and !Ω = (Ω1,Ω2,Ω3) are constant coefficients. Also, spatial indices are
lowered and raised with δab and its inverse δab.

Show that K is a Killing field and that

UK = {(x0,!x) ∈ M : ‖!x⊥‖ < c/‖!Ω‖} (4)

is the open set in Minkowski space where K is timelike. Here !x⊥ is the component of
!x perpendicular to !Ω (in the ordinary R3-sense).

Let K↓ := g(K, ·); show that

K↓ ∧ dK↓ = −cΩaεabc dx
0 ∧ dxa ∧ dxb . (5)
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Problem 3

This problem gives a simple and illustrative example for Problem 3 of Sheet 4 and also
relates to the previous problem.

We consider Minkowski space in (2+1)-dimensions (we simply suppress one spatial
dimension which turns out to be unimportant for what we wish to illustrate). We use
planar polar coordinates (r,ϕ) for the t = const. sections, so that the metric reads

g = c2dt⊗ dt− dr⊗ dr− r2dϕ⊗ dϕ (6)

. Now redefine the angular coordinate by

ϕ $→ ψ := ϕ−Ωt , (7)

corresponding to a frame that rigidly rotates with angular velocity Ω against the iner-
tial frame. We restrict attention to the subset r < c/Ω, for otherwise the rotation is
impossible.

Rewrite the metric (6) in terms of t, r and ψ and show that it can be put into the form

g = φ2 θ⊗ θ− h , (8a)

where

φ =

!
1−

"
rΩ/c

#2
, (8b)

θ = cdt+A = cdt−
(rΩ/c)

1−
"
rΩ/c

#2 rdψ , (8c)

h = dr⊗ dr+
r2 dψ⊗ dψ

1−
"
rΩ/c

#2 . (8d)

Discuss the 2-dimensional Riemannian geometry of h; e.g. the circumference of cir-
cles of constant r in comparison to their diameter, and the Riemann curvature tensor
(which has only one independent component).

Problem 4

This problem continues the previous one.

Consider the vector field K = ∂/∂t in (t, r,ψ) coordinates. Show that its orthogonal
complement is the kernel of θ. Let γ be a curve in spacetime whose tangent vector is
in the kernel of θ. Argue that the points along this curve are obtained by successive
Einstein synchronisation, i.e. they are (locally) Einstein simultaneous. Now consider
a curve lying entirely on the cylinder r = R = const. and winding once around it,
so as to project to a circle r = R in space . Give an interpretation of the integral of A
along that circle. Can you consistently (transitively) Einstein-synchronise clocks that
are at rest on a disc that rigidly rotates in Minkowski space? What has transitivity of
clock synchronisation to do with whether dA vanishes or not?

One last - unrelated - question: What is the difference between the vector field ∂/∂t

in (t, r,ψ) and in (t, r,φ) coordinates?

Introduction into GR, SS 2020
qig.itp.uni-hannover.de/∼giulini/

2/4



Aufgabe 5

A static metric can be written in the form

g = gαβ(t,!x)dx
α ⊗ dxβ = φ2(!x) c2dt⊗ dt− ḡab(!x)dx

a ⊗ dxb . (9)

Show that the Christoffel symbols of (9) are as follows: They vanish if either all or
exactly one index is 0, i.e., Γ 000 = Γ 0ab = Γa0b = Γab0 = 0, and the other components are

Γa00 = ḡabφφ,b , Γ 0a0 = Γ 00a = [ln(φ)],a , Γabc = Γ̄abc . (10)

Here Γ̄abc are the Christoffel symbols for the metric ḡ and [· · · ],a = ∂[· · · ]/∂xa.

Now show that the components of the Ricci-tensor for the metric g has the following
form:

R00 = φ ∆̄φ , (11a)

R0a = 0 , (11b)

Rab = R̄ab −
∇̄a∇̄bφ

φ
. (11c)

Here ∇̄ is the Levi-Civita covariant derivative for ḡ und ∆̄ := ḡab∇̄a∇̄b is its Laplace-
Operator.

Now prove the following theorem: The only static, everywhere regular, and asymptot-
ically Minkowskian (i.e. the metric g tends to the Minkowski metric for ‖!x‖ → ∞)
solution to Einstein’s matter-free field equation without cosmological constant is flat
space (Minkowski space). This fact is sometime expresses by saying that Einstein’s
theory does not admit gravitational-solitons.

Tip: Proceed as follows: From (11a) we have ∆φ = 0 with φ → 1 at spatial infinity.
Now show that the only solution to this equation that is everywhere regular and ap-
proaches the value 1 at infinity is constant everywhere, i.e. φ ≡ 1. Then (11c) implies
R̄ab = 0. But in 3-dimensions a vanishing Ricci-tensor implies a vanishing Riemann
tensor (compare Lecture 8).

Aufgabe 6

Again we consider static metrics (9). An alternative way to write them is as follows:

g = φ2(!x)
$
c2dt⊗ dt− ĝab(!x)dx

a ⊗ dxb
%
, (12a)

where
ḡ = φ2ĝ . (12b)

We consider geodesics in (12a). Write down the Euler-Lagrange equations of the
energy functional for t(λ) and za(λ). From the first you get ṫφ2 = K = const. The
Euler-Lagrange equation for za(λ) can be simplified in a twofold way: First by using
that φ2

"
c2ṫ2 − ĝabż

ażb
#
= κ = const. (proved in Lecture 5; compare equation
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(5.42)). Second, by using t instead of λ as parameter. For that we assume that ṫ ∕= 0,
i.e. that the constant K is non zero. Now prove, that the Euler-Lagrange equation for
za(t) can be cast into the form ( ′ means t-derivative):

z ′′a + Γ̂abc z
′bz ′c = −C ĝab (φ2),b . (13)

here C := κc2/2K2 and all fields are evaluated at z(t).

This implies the following important theorem: Lightlike geodesics (κ = 0) in static
space-times with metric (12a) are such that their projections into the spatial hypersur-
faces t = const. are geodesics with respect to the Riemannian metric ĝ, where t is an
affine parameter. For this reason one often calls ĝ the optical metric of space. (Note:
General spacetimes contain no naturally given spacelike hypersurfaces and hence do
not define a natural notion of “spacelike projection”. But static spacetimes do have
such hypersurfaces: those orthogonal to the Killing vector field defining staticity.)
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