Exercises for the lecture on Introduction into General Relativity by DOMENICO GIULINI

Sheet 5

Problem 1

Let u be a four-velocity field (i.e. a timelike vector field with normalisation $g(u, u,) = c^2$), just like in Problem 4 of Sheet 4. Our notation here will be as there. Let $u^{\downarrow} := g(u, \cdot) = u_{\alpha} dx^{\alpha}$ be its corresponding one-form and $\omega := \frac{1}{2} \omega_{\alpha\beta} dx^{\alpha} \wedge dx^{\beta}$ the vorticity two-form, where $\omega_{\alpha\beta}$ is defined like on sheet 4. Show that

$$\omega = \frac{1}{2c^2} i_u (u^{\downarrow} \wedge du^{\downarrow}) \tag{1}$$

where i_u is the map from k-forms to k - 1 forms obtained by contracting the first tensor-factor with u.

Problem 2

Consider Minkowski in a global affine chart $(x^0 = ct, x^1 = x, x^2 = y, x^3 = z)$ in which its metric reads

$$g = c^2 dt \otimes dt - \delta_{ab} dx^a \otimes dx^b \,. \tag{2}$$

Consider the following vector field:

$$\mathsf{K} := \frac{\partial}{\partial t} + \varepsilon_{ab}{}^{c}\Omega^{a}x^{b}\frac{\partial}{\partial x^{c}}. \tag{3}$$

Here ε_{abc} equals 1 or -1 depending on whether (abc) is an even or odd permutation of (123) and $\vec{\Omega} = (\Omega^1, \Omega^2, \Omega^3)$ are constant coefficients. Also, spatial indices are lowered and raised with δ_{ab} and its inverse δ^{ab} .

Show that K is a Killing field and that

$$\mathbf{U}_{\mathsf{K}} = \{ (\mathbf{x}^{0}, \vec{\mathbf{x}}) \in \mathsf{M} : \|\vec{\mathbf{x}}_{\perp}\| < c / \|\vec{\Omega}\| \}$$
(4)

is the open set in Minkowski space where K is timelike. Here \vec{x}_{\perp} is the component of \vec{x} perpendicular to $\vec{\Omega}$ (in the ordinary \mathbb{R}^3 -sense).

Let $K^{\downarrow} := g(K, \cdot)$; show that

$$\mathsf{K}^{\downarrow} \wedge \mathsf{d}\mathsf{K}^{\downarrow} = -c\Omega^{a}\varepsilon_{abc}\,\mathsf{d}x^{0} \wedge \mathsf{d}x^{a} \wedge \mathsf{d}x^{b}\,. \tag{5}$$

Problem 3

This problem gives a simple and illustrative example for Problem 3 of Sheet 4 and also relates to the previous problem.

We consider Minkowski space in (2+1)-dimensions (we simply suppress one spatial dimension which turns out to be unimportant for what we wish to illustrate). We use planar polar coordinates (r, φ) for the t = const. sections, so that the metric reads

$$g = c^2 dt \otimes dt - dr \otimes dr - r^2 d\phi \otimes d\phi$$
(6)

. Now redefine the angular coordinate by

$$\varphi \mapsto \psi := \varphi - \Omega t \,, \tag{7}$$

corresponding to a frame that rigidly rotates with angular velocity Ω against the inertial frame. We restrict attention to the subset $r < c/\Omega$, for otherwise the rotation is impossible.

Rewrite the metric (6) in terms of t, r and ψ and show that it can be put into the form

$$g = \phi^2 \,\theta \otimes \theta - h \,, \tag{8a}$$

where

$$\phi = \sqrt{1 - (r\Omega/c)^2}, \qquad (8b)$$

$$\theta = cdt + A = cdt - \frac{(r\Omega/c)}{1 - (r\Omega/c)^2} rd\psi, \qquad (8c)$$

$$h = dr \otimes dr + \frac{r^2 d\psi \otimes d\psi}{1 - (r\Omega/c)^2}.$$
(8d)

Discuss the 2-dimensional Riemannian geometry of h; e.g. the circumference of circles of constant r in comparison to their diameter, and the Riemann curvature tensor (which has only one independent component).

Problem 4

This problem continues the previous one.

Consider the vector field $K = \partial/\partial t$ in (t, r, ψ) coordinates. Show that its orthogonal complement is the kernel of θ . Let γ be a curve in spacetime whose tangent vector is in the kernel of θ . Argue that the points along this curve are obtained by successive Einstein synchronisation, i.e. they are (locally) Einstein simultaneous. Now consider a curve lying entirely on the cylinder r = R = const. and winding once around it, so as to project to a circle r = R in space. Give an interpretation of the integral of A along that circle. Can you consistently (transitively) Einstein-synchronise clocks that are at rest on a disc that rigidly rotates in Minkowski space? What has transitivity of clock synchronisation to do with whether dA vanishes or not?

One last - unrelated - question: What is the difference between the vector field $\partial/\partial t$ in (t, r, ψ) and in (t, r, φ) coordinates?

Aufgabe 5

A static metric can be written in the form

$$g = g_{\alpha\beta}(t,\vec{x}) \, dx^{\alpha} \otimes dx^{\beta} = \phi^2(\vec{x}) \, c^2 dt \otimes dt - \bar{g}_{ab}(\vec{x}) \, dx^a \otimes dx^b \,. \tag{9}$$

Show that the Christoffel symbols of (9) are as follows: They vanish if either all or exactly one index is 0, i.e., $\Gamma_{00}^0 = \Gamma_{ab}^0 = \Gamma_{0b}^a = \Gamma_{b0}^a = 0$, and the other components are

$$\Gamma_{00}^{a} = \bar{g}^{ab} \phi \phi_{,b} , \qquad \Gamma_{a0}^{0} = \Gamma_{0a}^{0} = [\ln(\phi)]_{,a} , \qquad \Gamma_{bc}^{a} = \bar{\Gamma}_{bc}^{a} .$$
(10)

Here $\bar{\Gamma}^{a}_{bc}$ are the Christoffel symbols for the metric \bar{g} and $[\cdots]_{a} = \partial [\cdots] / \partial x^{a}$.

Now show that the components of the Ricci-tensor for the metric g has the following form:

$$\mathbf{R}_{00} = \boldsymbol{\phi} \, \bar{\Delta} \boldsymbol{\phi} \,, \tag{11a}$$

$$R_{0a} = 0, \qquad (11b)$$

$$R_{ab} = \bar{R}_{ab} - \frac{\nabla_a \nabla_b \Phi}{\Phi}.$$
 (11c)

Here $\bar{\nabla}$ is the Levi-Civita covariant derivative for \bar{g} und $\bar{\Delta} := \bar{g}^{ab} \bar{\nabla}_a \bar{\nabla}_b$ is its Laplace-Operator.

Now prove the following theorem: The only static, everywhere regular, and asymptotically Minkowskian (i.e. the metric g tends to the Minkowski metric for $\|\vec{x}\| \to \infty$) solution to Einstein's matter-free field equation without cosmological constant is flat space (Minkowski space). This fact is sometime expresses by saying that Einstein's theory does not admit gravitational-solitons.

Tip: Proceed as follows: From (11a) we have $\Delta \phi = 0$ with $\phi \rightarrow 1$ at spatial infinity. Now show that the only solution to this equation that is everywhere regular and approaches the value 1 at infinity is constant everywhere, i.e. $\phi \equiv 1$. Then (11c) implies $\bar{R}_{ab} = 0$. But in 3-dimensions a vanishing Ricci-tensor implies a vanishing Riemann tensor (compare Lecture 8).

Aufgabe 6

Again we consider static metrics (9). An alternative way to write them is as follows:

$$g = \phi^2(\vec{x}) \left(c^2 dt \otimes dt - \hat{g}_{ab}(\vec{x}) dx^a \otimes dx^b \right), \qquad (12a)$$

where

$$\bar{g} = \phi^2 \hat{g} \,. \tag{12b}$$

We consider geodesics in (12a). Write down the Euler-Lagrange equations of the energy functional for $t(\lambda)$ and $z^{a}(\lambda)$. From the first you get $\dot{t}\varphi^{2} = K = \text{const.}$ The Euler-Lagrange equation for $z^{a}(\lambda)$ can be simplified in a twofold way: First by using that $\varphi^{2}(c^{2}\dot{t}^{2} - \hat{g}_{ab}\dot{z}^{a}\dot{z}^{b}) = \kappa = \text{const.}$ (proved in Lecture 5; compare equation

(5.42)). Second, by using t instead of λ as parameter. For that we assume that $\dot{t} \neq 0$, i.e. that the constant K is non zero. Now prove, that the Euler-Lagrange equation for $z^{\alpha}(t)$ can be cast into the form (' means t-derivative):

$$z''^{a} + \hat{\Gamma}^{a}_{bc} \, z'^{b} z'^{c} = -C \, \hat{g}^{ab} \, (\phi^{2})_{,b} \,. \tag{13}$$

here $C := \kappa c^2/2K^2$ and all fields are evaluated at z(t).

This implies the following important theorem: Lightlike geodesics ($\kappa = 0$) in static space-times with metric (12a) are such that their projections into the spatial hypersurfaces t = const. are geodesics with respect to the Riemannian metric \hat{g} , where t is an affine parameter. For this reason one often calls \hat{g} the *optical metric* of space. (Note: General spacetimes contain no naturally given spacelike hypersurfaces and hence do not define a natural notion of "spacelike projection". But static spacetimes do have such hypersurfaces: those orthogonal to the Killing vector field defining staticity.)