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Problem 1

Consider the linearised Einstein equations in De Donder gauge for the static and
spherically-symmetric mass-distribution

ρ(r) =

{
ρ0 for R1 < r < R2

0 otherwise
(1)

where ρ0 > 0 is constant.

Show that for r < R1 the coefficients gαβ = ηαβ + hαβ differ from ηαβ only by
constant rescalings of the time and the space coordinates and that spacetime is flat in
that region. Are the metrics gαβ and ηαβ gauge equivalent in that region?

Problem 2

In Lecture 11 we derived for the “mixed components” (h01, h02, h03) =: !h of the
linearised metric gαβ − ηαβ =: hαβ the following expression (compare lecture-notes,
formula (11.46)):

!h(!x) =
4Gρ0
c3

!Ω×
∫
d3x ′ !x ′

‖!x− !x ′‖ . (2)

This is valid for for a spherically symmetric and locally constant mass-distribution ρ0
that rigidly rotates with angular velocity !Ω. The spatial integral is to be extended over
the region with non-zero mass distribution. We also derived the formula (compare
lecture-notes, formula (11.56)):

∫
d3x ′ !x ′

‖!x− !x ′‖ =

∫
dr ′

∫

S2(r ′)
d2Ω ′

!x ′

‖!x− !x ′‖
= !x

4π

3

∫
dr ′

{
r ′4/r3 for r > r ′

r ′ for r ′ > r

(3)
where S2(r ′) := {!x ′ ∈ R3 : ‖!x ′‖ = r ′}.

In Lecture 11 we applied this to the region outside a spherical star, i.e. we considered
the case r > r ′. In this exercise we want to consider the opposite case, where r ′ > r.
This case is realised if the mass is concentrated in a spherical shell like in (1), but
now rotating with constant angular velocity !Ω. The coefficients !h are to be computed
inside the inner shell, i.e. for r < R1. (Tip: Just use the stated formulae; you do not
need to know anything else from Lecture 11.)
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Calculate the gravitomagnetic field !B = −c!∇ × !h inside the shell and show that
the geodesic equation for a test particle acquires a term that just looks like the Coriolis
force with a prefactor depending on the mass distribution. Assume ρ0 = 10−29·g·cm−3

(average mass-density in our universe). How thick would the mass shell have to be,
assuming R1 = 0, so that this prefactor becomes equal to unity?

Problem 3

In Lecture 11 we showed that outside a stationary, spherically symmetric and homoge-
neous mass distribution that rigidly rotates with constant angular velocity Ω, a torque-
free supported top will precess with angular velocity !ωTL = −!B/2 relative to the
stationary frame, where !B = −c!∇× !h is the gravitomagnetic field (compare lecture-
notes, formula (11.74)).

Use formula (11.76) from the lecture-notes to calculate !ωTL as a function of latitude
on the surface of the Earth, assuming its mass mE = 6 · 1024 kg to be homogeneously
distributed over a ball of radius 6.4× 103 km.

Recall that changes ∆Ω in angular velocity of frames can be detected by means of the
Sagnac-Effect as optical phase shifts ∆ϕ. The relation is (compare solutions-notes for
problem 4 on sheet 5, formula 5.4.11):

∆ϕ =
8πA

λc
∆Ω (4)

The Federal Agency of Cartography and Geodesy runs a Geodetic Observatory at
Wettzell in south-east Germany, which includes a 4m×4m square-shaped HeNe-ring-
laser operating at a wavelength of 632.8 nm. With that they can measure variations in
the length of a day down to 0.1 milliseconds.

Would that laser - in principle - be able to detect the Earth’s gravitomagnetic field?
Or how large would the side-length of such a square-ring-laser have to be in oder to
achieve that in the perfectly ideal case, neglecting all possible kinds of perturbations
and noise?

Problem 4 (for DiffGeom lovers)

Consider a timelike wordline s %→ z(s) in Minkowski space, where we choose proper
length s as parameter; hence η(ż, ż) = 1. We think of this worldline as that of a
pointlike particle with intrinsic angular momentum, called “spin”. The spin vector S
defines a vector field over the map z (compare chapter 5.2 of DiffGeom lecture-notes)
whose values are orthogonal to ż, i.e. η(ż, S) = 0. This means that S(s) is contained
in the orthogonal complement of ż(s) ∈ Tz(s)(M) which is a spacelike hyperplane that
is often referred to as the “instantaneous rest space” of the particle.

The law according to which the spin vector S is transported along the wordline is
given by the requirement that its Fermi derivative along z is zero (compare chapter 5.8
DiffGeom lecture-notes, in particular eqn. (5.77)):

FzS = 0 ⇔
!
∇ż +

"
ż⊗ z̈↓ − z̈⊗ ż↓

#$
S = 0 . (5)
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Show that this is equivalent to

Ṡ = −ż η(z̈, S) . (6)

In order to evaluate this equation, we express the four-vectors ż and S in terms of
components. To that end we introduce a fixed affine frame in Minkowski space, which
we call the “laboratory frame”, and write

ż = γ(1, !β) (7)

S =

%
γ!β · !S , !S+

γ2

γ+ 1
(!β · !S)!β

&
. (8)

Here β = !v/c is the velocity of the particle (in units of c) with respect to the laboratory
frame and γ = 1/

'
1− β2. In contrast, as is obvious from (7), !S are not the spatial

components of S with respect to the laboratory frame, but rather with respect to that
instantaneous rest frame of the particle that is obtained from the laboratory frame by a
pure boost with boost-parameter !β. Prove this!

Now, insert (7) and (8) into (6) and show that this 4-vector-equation is equivalent to

!̇S = !ωT × !S , (9a)

where

!ωT :=
γ2

γ+ 1
!̇β× !β (9b)

is the so-called “Thomas-Frequency” (More precisely, it becomes the Thomas fre-
quency if we redefine the overdot to be the derivative with respect to proper time τ

rather than proper length s = cτ, in which case (9a) still holds without any additional
factors of c if the same redefinition is made in (9b).)

(Tip: First evaluate the time component of (6) (using (7) and (8)) to express (!̇S · !β) in
terms of expressions containing !S but not !̇S. Then turn to the three space components
of (6) and solve for !̇S by eliminating all terms containing (!̇S · !β) by the previously
derived expression. Stay confident and keep calm.)

Recall the interpretation of the components !S and use it to give an interpretation of (9a)
in terms of geometrically defined structures. What is the spin vector rotating against?

Problem 5 (for true DiffGeom lovers)

Recall the definition of the Fermi covariant derivative in terms of projection operators
(DiffGeom lecture-notes, eq. (5.71)). Recall also the definition of the Levi-Civita co-
variant derivative for embedded surfaces in euclidean space (DiffGeom lecture-notes,
chapter 3.5). Convince yourself that the latter actually works in higher dimensions and
other signatures, as long as the hypersurface is non-lightlike (i.e. its normal is nowhere
lightlike). In particular, it works for the hyperboloidal hypersurfce of normalised time-
like vectors in the 4-dimensional vector space with Minkowskian inner product. Now
show that (6) is equivalent to parallel transport of S along the hodograph s %→ ż(s)
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(the curve in the space of velocities) with respect to the Levi-Civita connection on the
unit spacelike hyperboliod. Give an interpretation of the Thomas precession as Rie-
mannian holonomy on the negatively curved 3-dimensional Riemannian manifold of
four-velocities.
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