Exercises for the lecture on

Introduction into General Relativity

by Domenico GiUlini

Sheet 6

Problem 1

Consider the linearised Einstein equations in De Donder gauge for the static and spherically-symmetric mass-distribution

$$
\rho(r)= \begin{cases}\rho_{0} & \text { for } R_{1}<r<R_{2} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

where $\rho_{0}>0$ is constant.
Show that for $r<R_{1}$ the coefficients $g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha \beta}$ differ from $\eta_{\alpha \beta}$ only by constant rescalings of the time and the space coordinates and that spacetime is flat in that region. Are the metrics $g_{\alpha \beta}$ and $\eta_{\alpha \beta}$ gauge equivalent in that region?

Problem 2

In Lecture 11 we derived for the "mixed components" $\left(h_{01}, h_{02}, h_{03}\right)=: \vec{h}$ of the linearised metric $g_{\alpha \beta}-\eta_{\alpha \beta}=: h_{\alpha \beta}$ the following expression (compare lecture-notes, formula (11.46)):

$$
\begin{equation*}
\vec{h}(\vec{x})=\frac{4 G \rho_{0}}{c^{3}} \vec{\Omega} \times \int d^{3} x^{\prime} \frac{\vec{x}^{\prime}}{\left\|\vec{x}-\vec{x}^{\prime}\right\|} . \tag{2}
\end{equation*}
$$

This is valid for for a spherically symmetric and locally constant mass-distribution ρ_{0} that rigidly rotates with angular velocity $\vec{\Omega}$. The spatial integral is to be extended over the region with non-zero mass distribution. We also derived the formula (compare lecture-notes, formula (11.56)):

$$
\int d^{3} x^{\prime} \frac{\vec{x}^{\prime}}{\left\|\vec{x}-\vec{x}^{\prime}\right\|}=\int d r^{\prime} \int_{S^{2}\left(r^{\prime}\right)} d^{2} \Omega^{\prime} \frac{\overrightarrow{x^{\prime}}}{\left\|\vec{x}-\overrightarrow{x^{\prime}}\right\|}=\vec{x} \frac{4 \pi}{3} \int d r^{\prime} \begin{cases}r^{\prime 4} / r^{3} & \text { for } r>r^{\prime} \tag{3}\\ r^{\prime} & \text { for } r^{\prime}>r\end{cases}
$$

where $S^{2}\left(r^{\prime}\right):=\left\{\vec{x}^{\prime} \in \mathbb{R}^{3}:\left\|\vec{x}^{\prime}\right\|=r^{\prime}\right\}$.
In Lecture 11 we applied this to the region outside a spherical star, i.e. we considered the case $r>r^{\prime}$. In this exercise we want to consider the opposite case, where $r^{\prime}>r$. This case is realised if the mass is concentrated in a spherical shell like in (1), but now rotating with constant angular velocity $\vec{\Omega}$. The coefficients $\overrightarrow{\mathrm{h}}$ are to be computed inside the inner shell, i.e. for $r<R_{1}$. (Tip: Just use the stated formulae; you do not need to know anything else from Lecture 11.)

Calculate the gravitomagnetic field $\vec{B}=-c \vec{\nabla} \times \vec{h}$ inside the shell and show that the geodesic equation for a test particle acquires a term that just looks like the Coriolis force with a prefactor depending on the mass distribution. Assume $\rho_{0}=10^{-29} \cdot \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ (average mass-density in our universe). How thick would the mass shell have to be, assuming $R_{1}=0$, so that this prefactor becomes equal to unity?

Problem 3

In Lecture 11 we showed that outside a stationary, spherically symmetric and homogeneous mass distribution that rigidly rotates with constant angular velocity Ω, a torquefree supported top will precess with angular velocity $\vec{\omega}_{\mathrm{TL}}=-\overrightarrow{\mathrm{B}} / 2$ relative to the stationary frame, where $\vec{B}=-c \vec{\nabla} \times \vec{h}$ is the gravitomagnetic field (compare lecturenotes, formula (11.74)).

Use formula (11.76) from the lecture-notes to calculate $\vec{\omega}_{\text {IL }}$ as a function of latitude on the surface of the Earth, assuming its mass $m_{E}=6 \cdot 10^{24} \mathrm{~kg}$ to be homogeneously distributed over a ball of radius $6.4 \times 10^{3} \mathrm{~km}$.

Recall that changes $\Delta \Omega$ in angular velocity of frames can be detected by means of the Sagnac-Effect as optical phase shifts $\Delta \varphi$. The relation is (compare solutions-notes for problem 4 on sheet 5, formula 5.4.11):

$$
\begin{equation*}
\Delta \varphi=\frac{8 \pi A}{\lambda c} \Delta \Omega \tag{4}
\end{equation*}
$$

The Federal Agency of Cartography and Geodesy runs a Geodetic Observatory at Wettzell in south-east Germany, which includes a $4 \mathrm{~m} \times 4 \mathrm{~m}$ square-shaped HeNe-ringlaser operating at a wavelength of 632.8 nm . With that they can measure variations in the length of a day down to 0.1 milliseconds.

Would that laser - in principle - be able to detect the Earth's gravitomagnetic field? Or how large would the side-length of such a square-ring-laser have to be in oder to achieve that in the perfectly ideal case, neglecting all possible kinds of perturbations and noise?

Problem 4 (for DiffGeom lovers)

Consider a timelike wordline $s \mapsto z(s)$ in Minkowski space, where we choose proper length s as parameter; hence $\eta(\dot{z}, \dot{z})=1$. We think of this worldline as that of a pointlike particle with intrinsic angular momentum, called "spin". The spin vector S defines a vector field over the map z (compare chapter 5.2 of DiffGeom lecture-notes) whose values are orthogonal to \dot{z}, i.e. $\eta(\dot{z}, S)=0$. This means that $S(s)$ is contained in the orthogonal complement of $\dot{z}(s) \in T_{z(s)}(M)$ which is a spacelike hyperplane that is often referred to as the "instantaneous rest space" of the particle.

The law according to which the spin vector S is transported along the wordline is given by the requirement that its Fermi derivative along z is zero (compare chapter 5.8 DiffGeom lecture-notes, in particular eqn. (5.77)):

$$
\begin{equation*}
F_{z} S=0 \Leftrightarrow\left(\nabla_{\dot{z}}+\left(\dot{z} \otimes \ddot{z}^{\downarrow}-\ddot{z} \otimes \dot{z}^{\downarrow}\right)\right) S=0 . \tag{5}
\end{equation*}
$$

Show that this is equivalent to

$$
\begin{equation*}
\dot{S}=-\dot{z} \eta(\ddot{z}, S) . \tag{6}
\end{equation*}
$$

In order to evaluate this equation, we express the four-vectors \dot{z} and S in terms of components. To that end we introduce a fixed affine frame in Minkowski space, which we call the "laboratory frame", and write

$$
\begin{align*}
& \dot{z}=\gamma(1, \vec{\beta}) \tag{7}\\
& S=\left(\gamma \vec{\beta} \cdot \vec{S}, \vec{S}+\frac{\gamma^{2}}{\gamma+1}(\vec{\beta} \cdot \vec{S}) \vec{\beta}\right) . \tag{8}
\end{align*}
$$

Here $\beta=\vec{v} / \mathrm{c}$ is the velocity of the particle (in units of c) with respect to the laboratory frame and $\gamma=1 / \sqrt{1-\beta^{2}}$. In contrast, as is obvious from (7), \vec{S} are not the spatial components of S with respect to the laboratory frame, but rather with respect to that instantaneous rest frame of the particle that is obtained from the laboratory frame by a pure boost with boost-parameter $\vec{\beta}$. Prove this!
Now, insert (7) and (8) into (6) and show that this 4-vector-equation is equivalent to

$$
\begin{equation*}
\dot{\overrightarrow{\mathrm{S}}}=\vec{\omega}_{\mathrm{T}} \times \overrightarrow{\mathrm{S}} \tag{9a}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{\omega}_{\mathrm{T}}:=\frac{\gamma^{2}}{\gamma+1} \dot{\vec{\beta}} \times \vec{\beta} \tag{9b}
\end{equation*}
$$

is the so-called "Thomas-Frequency" (More precisely, it becomes the Thomas frequency if we redefine the overdot to be the derivative with respect to proper time τ rather than proper length $s=c \tau$, in which case (9a) still holds without any additional factors of c if the same redefinition is made in (9 b).)
(Tip: First evaluate the time component of (6) (using (7) and (8)) to express ($\dot{\vec{S}} \cdot \vec{\beta}$) in terms of expressions containing \vec{S} but not $\dot{\vec{S}}$. Then turn to the three space components of (6) and solve for $\dot{\vec{S}}$ by eliminating all terms containing $(\dot{\vec{S}} \cdot \vec{\beta})$ by the previously derived expression. Stay confident and keep calm.)
Recall the interpretation of the components \vec{S} and use it to give an interpretation of (9a) in terms of geometrically defined structures. What is the spin vector rotating against?

Problem 5 (for true DiffGeom lovers)

Recall the definition of the Fermi covariant derivative in terms of projection operators (DiffGeom lecture-notes, eq. (5.71)). Recall also the definition of the Levi-Civita covariant derivative for embedded surfaces in euclidean space (DiffGeom lecture-notes, chapter 3.5). Convince yourself that the latter actually works in higher dimensions and other signatures, as long as the hypersurface is non-lightlike (i.e. its normal is nowhere lightlike). In particular, it works for the hyperboloidal hypersurfce of normalised timelike vectors in the 4 -dimensional vector space with Minkowskian inner product. Now show that (6) is equivalent to parallel transport of S along the hodograph $s \mapsto \dot{z}(s)$
(the curve in the space of velocities) with respect to the Levi-Civita connection on the unit spacelike hyperboliod. Give an interpretation of the Thomas precession as Riemannian holonomy on the negatively curved 3-dimensional Riemannian manifold of four-velocities.

