
Exercises for the lecture on

Introduction into General Relativity
by DOMENICO GIULINI

Sheet 7

Problem 1

Since Problem 6 of Sheet 5 has not yet been done, it will be repeated here as Problem 1.

Problem 2

In Lecture 12 we showed that outside matter the linearised gravitational field hαβ =
gαβηαβ can be made to satisfy the following complete set of gauge-conditions (i.e.
there exist no residual gauge transformations),

kαh̃αβ(k) = 0 , (1a)

vαh̃αβ(k) = 0 , (1b)

ηαβh̃αβ(k) = 0 , (1c)

where v is any fixed timelike vector and where h̃αβ is the Fourier transform of hαβ.
This is called the transverse-tracless gauge.

Let {e0, e1, e2, e3} be an orthonormal basis of Minkowski space, with dual basis
{θ0, θ1, θ2, θ3}. We choose v = e0 and consider the amplitude h̃(k) for k = k∗ :=
κ(ω/c)(e0 + e3), where κ is some constant equal to k0 = k3. This amplitude corre-
sponds to a plane wave propagating at the velocity of light in e3-direction.

Show that (1) imply for the tensor h̃ = h̃αβθ
α ⊗ θβ ∈ V∗ ⊗ V∗ that

h̃(k∗) = h+

!
θ1 ⊗ θ1 − θ2 ⊗ θ2

"
+ h×

!
θ1 ⊗ θ2 + θ2 ⊗ θ1

"
, (2)

where h+ and h× are independent components. Characterise the 1-dimensional sub-
spaces in V∗ ⊗ V∗ to which the amplitudes h+ and h× correspond and show that they
are orthogonal.

Now consider Lorentz transformations that fix e0 and e3, i.e. spatial rotations in the
plane span{e1, e2}, which we think of as being oriented in the (12) sense. Show that
they are given by

R(ϕ) = cos(ϕ)
!
e1 ⊗ θ1 + e2 ⊗ θ2

"
+ sin(ϕ)

!
e2 ⊗ θ1 − e1 ⊗ θ2

"
(3)

corresponding to a positive rotation by angle ϕ.

Show that the action Tϕ of R(ϕ) on h̃(k∗) is given by

Tϕ
!
h̃(k∗)

"
= h ′

+

!
θ1 ⊗ θ1 − θ2 ⊗ θ2

"
+ h ′

×
!
θ1 ⊗ θ2 + θ2 ⊗ θ1

"
, (4)
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where #
h ′
+

h ′
×

$
=

#
cos(2ϕ) − sin(2ϕ)
sin(ϕ) cos(2ϕ)

$#
h+

h×

$
. (5)

This means that an orthogonal rotation in V in the 2-plane perpendicular to the direc-
tion of propagation corresponds to an orthogonal transformation in the 2-dimensional
subspace of V∗ ⊗ V∗ spanned by the directions of the amplitudes h+ and h× by twice
the angle (both in positive directions, if the orientations are chosen as indicated: (12)
in the first and (+×) in the second case). Can you explain the two meanings of the
word “orthogonal” in the previous sentence?

Problem 3

Consider a linearised metric g = η+h of a plane-gravitational wave in the transverse-
traceless gauge. As before we take k ∝ (e0 + e3), i.e. the spatial direction of propa-
gation is parallel to the third axis and oriented in the positive direction.

Show that the metric reads

g = cdt⊗ cdt−
!
1− h+(z− ct))dx⊗ dx

−
!
1+ h+(z− ct)

"
dy⊗ dy

− dz⊗ dz

+ h×(z− ct)
!
dx⊗ dy+ dy⊗ dx

"
(6)

where the argument (z−ct) is meant to indicate that the functions h+ and h× depends
on (t, x, y, z) only through the combination z− ct.

Write down all components of the geodesic equation and show that they are solved
by all spatial coordinates x, y, z being constant. Consider amplitude-functions whose
support is contained on the negative real axis. Consider a large set of test particles
distributed more or less uniformly on the circle {x2 + y2 = R2} in the plane z = 0.
The particles are at fixed spatial coordinates for t < 0. What happens to them for
t > 0, after being hit by the gravitational wave? Are they starting to “move”? If so,
how much and in what directions? Discuss the h+ and h× amplitudes separately. (Tip:
Deduce anything you say as much as you can from the equations; avoid folklore!)

Problem 4 (for DiffGeom lovers)

This problem is closely related to previous problems, like Problem 4 of Sheet 6, which
it generalises and specialises at the same time: It generalises from Minkowski to ar-
bitrary stationary curved spacetimes, but is specialises to stationary observers. It also
relates closely to Problem 4 of Sheet 4 and Problem 1 of Sheet 5.

Consider a stationary spacetime (M,g,K), where M is a smooth manifold M, g a
Lorentzian Metrik, and K a timelike Killing field K: LKg = 0. In an open neighbour-
hood of M we choose a field of “adapted stationary orthonormal frames”. Here, as
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usual, orthogonality means that

g(eα, eβ) = ηαβ = diag(1,−1,−1,−1) , (7a)

“adapted” means that
e0 = K/

%
g(K,K) , (7b)

and “stationary” means that
LKeα = 0 . (7c)

Prove that this is always possible; i.e., if p %→ {eα(p) : α = 0, 1, 2, 3} ⊂ Tp(M) is a
smooth field of orthonormal bases for all p ∈ Σ, where Σ ⊂ M is a spacelike hyper-
surface, and if γ is an integral curve of K that intersects Σ at p, and if we propagate
the eα(p) along γ by requiring (7c), then (7a) and (7b) will continue to hold along γ.

Now consider a “stationary observer” moving along a worldline γ that is an integral
curve of K, but parametrised by proper length s; i.e. γ̇ = K/

%
g(K,K) = e0. The

observer carries along γ a “gyroscope” that is characterised by a “spin” vector-field
S ∈ STγ(M) over γ, obeying

g(γ̇, S) = 0 (8a)

and
FγS := ∇γ̇S+ g(γ̈, S) γ̇− g(γ̇, S) γ̈ = 0 (8b)

Show (or argue) that (8b) indeed preserves (8a) and that S has constant length ‖S‖ =%
−g(S, S) along γ. Hence we may write

S = Saea , (9)

where the ea are any three orthonormal vectors perpendicular to γ̇ = e0 (at this point
the ea it need not be the stationary basis introduced above). We write !S := (S1, S2, S3).

Show that (8b) is equivalent to
!̇S = !ωT × !S , (10a)

where
!ωT :=

!
ω1

T , ω
2
T , ω

3
T

"
:=

!
ω2

03 , ω
3
01 , ω

1
02

"
(10b)

are the connection coefficient from ∇eαeβ = ω
γ
αβeγ.

Show further that if we now specialise the spatial basis vectors ea to be stationary, i.e.
obey (7c), then, defining as usual K↓ := g(K, ·), we have (ε123 = 1 etc.)

ωa
T = 1

4ε
abcdK↓(eb, ec)/‖K‖ . (11)

Finally deduce from this the following geometric statement that is independent of any
choice of bases: The spin vector S ∈ STγ(M) precesses against the frame of station-
arity (defined by a timelike Killing field) by the angular velocity ωT ∈ STγ(M)

ωT = − 1
2

&
"
!
u↓ ∧ du↓"

'↑
(12)
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where " is the Hodge duality-map and u = K/
%

g(K,K) is the normalised Killing
field. Alternatively, introducing the angular-velocity 2-form ω := iu "ω↓

T , we have

ω := iu "ω↓
T = − 1

2 iu
!
u↓ ∧ du↓" = − 1

2π⊗ π
!
du↓" (13)

where π is the projection perpendicular to u (as in Problem 4 of Sheet 4). Note that on
p-forms in n dimensions and metric with n− negative directions (signature (n+, n−)
with n = n++n−), we have "◦" = (−1)p(n−p)+n− , which applied to our case p = 3,
n = 4, and n=3 gives " ◦ " = id. See DiffGeom-Notes (7.45,7.51).

Compare this with Problem 1 on Sheet 5 (the difference in the factor c2 results from
the fact that there u was normalised to c rather than 1.) This shows that for stationary
observers the vorticity 2-form introduced earlier ist equivalent to −ωT . This sign-
difference makes sense since “vorticity” is the angular velocity of the fluid against
the inertial frame defined by torque-free suspended gyroscopes, whereas according
to our definition here the Thomas precession ωT represents the angular velocity of
torque-free suspended gyroscopes against the stationary frame (realised by the ob-
server “flowing” along the integral curves of the timelike Killing field. Sometimes
ωT is defined oppositely, i.e. as rotation of the stationary observer against the sys-
tem defined by gyroscopes (e.g. in Straumann), in which case ωT has the opposite
sign to ours. We have chosen our convention because our ωT corresponds to what is
directly observed: The motion of torque-free suspended gyroscopes against the sta-
tionary frame that is (approximately) realised by the best-matched average rotational
rest-frame of the background of “fixed stars”.

Introduction into GR, SS 2020
qig.itp.uni-hannover.de/∼giulini/

4/4


