Exercises for the lecture on
 Introduction into General Relativity

by Domenico GiUlini

Sheet 7

Problem 1

Since Problem 6 of Sheet 5 has not yet been done, it will be repeated here as Problem 1.

Problem 2

In Lecture 12 we showed that outside matter the linearised gravitational field $h_{\alpha \beta}=$ $g_{\alpha \beta} \eta_{\alpha \beta}$ can be made to satisfy the following complete set of gauge-conditions (i.e. there exist no residual gauge transformations),

$$
\begin{align*}
\mathrm{k}^{\alpha} \tilde{h}_{\alpha \beta}(\mathrm{k}) & =0, \tag{1a}\\
\nu^{\alpha} \tilde{h}_{\alpha \beta}(\mathrm{k}) & =0, \tag{1b}\\
\eta^{\alpha \beta} \tilde{h}_{\alpha \beta}(\mathrm{k}) & =0, \tag{1c}
\end{align*}
$$

where v is any fixed timelike vector and where $\tilde{h}_{\alpha \beta}$ is the Fourier transform of $h_{\alpha \beta}$. This is called the transverse-tracless gauge.
Let $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal basis of Minkowski space, with dual basis $\left\{\theta^{0}, \theta^{1}, \theta^{2}, \theta^{3}\right\}$. We choose $v=e_{0}$ and consider the amplitude $\tilde{h}(k)$ for $k=k_{*}:=$ $\kappa(\omega / c)\left(e_{0}+e_{3}\right)$, where k is some constant equal to $\mathrm{k}^{0}=\mathrm{k}^{3}$. This amplitude corresponds to a plane wave propagating at the velocity of light in e_{3}-direction.
Show that (1) imply for the tensor $\tilde{h}=\tilde{h}_{\alpha \beta} \theta^{\alpha} \otimes \theta^{\beta} \in V^{*} \otimes V^{*}$ that

$$
\begin{equation*}
\tilde{h}\left(k_{*}\right)=h_{+}\left(\theta^{1} \otimes \theta^{1}-\theta^{2} \otimes \theta^{2}\right)+h_{\times}\left(\theta^{1} \otimes \theta^{2}+\theta^{2} \otimes \theta^{1}\right), \tag{2}
\end{equation*}
$$

where h_{+}and h_{\times}are independent components. Characterise the 1-dimensional subspaces in $\mathrm{V}^{*} \otimes \mathrm{~V}^{*}$ to which the amplitudes h_{+}and h_{\times}correspond and show that they are orthogonal.

Now consider Lorentz transformations that fix e_{0} and e_{3}, i.e. spatial rotations in the plane $\operatorname{span}\left\{e_{1}, e_{2}\right\}$, which we think of as being oriented in the (12) sense. Show that they are given by

$$
\begin{equation*}
R(\varphi)=\cos (\varphi)\left(e_{1} \otimes \theta^{1}+e_{2} \otimes \theta^{2}\right)+\sin (\varphi)\left(e_{2} \otimes \theta^{1}-e_{1} \otimes \theta^{2}\right) \tag{3}
\end{equation*}
$$

corresponding to a positive rotation by angle φ.
Show that the action T_{φ} of $R(\varphi)$ on $\tilde{\mathfrak{h}}\left(\mathrm{k}_{*}\right)$ is given by

$$
\begin{equation*}
\mathrm{T}_{\varphi}\left(\tilde{h}\left(k_{*}\right)\right)=h_{+}^{\prime}\left(\theta^{1} \otimes \theta^{1}-\theta^{2} \otimes \theta^{2}\right)+h_{\times}^{\prime}\left(\theta^{1} \otimes \theta^{2}+\theta^{2} \otimes \theta^{1}\right), \tag{4}
\end{equation*}
$$

where

$$
\binom{h_{+}^{\prime}}{h_{\times}^{\prime}}=\left(\begin{array}{cc}
\cos (2 \varphi) & -\sin (2 \varphi) \tag{5}\\
\sin (\varphi) & \cos (2 \varphi)
\end{array}\right)\binom{h_{+}}{h_{\times}} .
$$

This means that an orthogonal rotation in V in the 2-plane perpendicular to the direction of propagation corresponds to an orthogonal transformation in the 2-dimensional subspace of $\mathrm{V}^{*} \otimes \mathrm{~V}^{*}$ spanned by the directions of the amplitudes h_{+}and h_{\times}by twice the angle (both in positive directions, if the orientations are chosen as indicated: (12) in the first and $(+x)$ in the second case). Can you explain the two meanings of the word "orthogonal" in the previous sentence?

Problem 3

Consider a linearised metric $\mathrm{g}=\eta+\mathrm{h}$ of a plane-gravitational wave in the transversetraceless gauge. As before we take $k \propto\left(e_{0}+e_{3}\right)$, i.e. the spatial direction of propagation is parallel to the third axis and oriented in the positive direction.

Show that the metric reads

$$
\begin{align*}
g=c d t \otimes c d t & -\left(1-h_{+}(z-c t)\right) d x \otimes d x \\
& -\left(1+h_{+}(z-c t)\right) d y \otimes d y \tag{6}\\
& -d z \otimes d z \\
& +h_{\times}(z-c t)(d x \otimes d y+d y \otimes d x)
\end{align*}
$$

where the argument $(z-c t)$ is meant to indicate that the functions h_{+}and h_{\times}depends on (t, x, y, z) only through the combination $z-c t$.
Write down all components of the geodesic equation and show that they are solved by all spatial coordinates x, y, z being constant. Consider amplitude-functions whose support is contained on the negative real axis. Consider a large set of test particles distributed more or less uniformly on the circle $\left\{x^{2}+y^{2}=R^{2}\right\}$ in the plane $z=0$. The particles are at fixed spatial coordinates for $t<0$. What happens to them for $\mathrm{t}>0$, after being hit by the gravitational wave? Are they starting to "move"? If so, how much and in what directions? Discuss the h_{+}and h_{\times}amplitudes separately. (Tip: Deduce anything you say as much as you can from the equations; avoid folklore!)

Problem 4 (for DiffGeom lovers)

This problem is closely related to previous problems, like Problem 4 of Sheet 6, which it generalises and specialises at the same time: It generalises from Minkowski to arbitrary stationary curved spacetimes, but is specialises to stationary observers. It also relates closely to Problem 4 of Sheet 4 and Problem 1 of Sheet 5.

Consider a stationary spacetime (M, g, K), where M is a smooth manifold M, g a Lorentzian Metrik, and K a timelike Killing field $\mathrm{K}: \mathrm{L}_{K} g=0$. In an open neighbourhood of M we choose a field of "adapted stationary orthonormal frames". Here, as
usual, orthogonality means that

$$
\begin{equation*}
g\left(e_{\alpha}, e_{\beta}\right)=\eta_{\alpha \beta}=\operatorname{diag}(1,-1,-1,-1) \tag{7a}
\end{equation*}
$$

"adapted" means that

$$
\begin{equation*}
e_{0}=K / \sqrt{g(K, K)} \tag{7b}
\end{equation*}
$$

and "stationary" means that

$$
\begin{equation*}
L_{k} e_{\alpha}=0 \tag{7c}
\end{equation*}
$$

Prove that this is always possible; i.e., if $p \mapsto\left\{e_{\alpha}(p): \alpha=0,1,2,3\right\} \subset T_{p}(M)$ is a smooth field of orthonormal bases for all $p \in \Sigma$, where $\Sigma \subset M$ is a spacelike hypersurface, and if γ is an integral curve of K that intersects Σ at p, and if we propagate the $e_{\alpha}(p)$ along γ by requiring (7c), then (7a) and (7b) will continue to hold along γ.

Now consider a "stationary observer" moving along a worldline γ that is an integral curve of K, but parametrised by proper length s; i.e. $\dot{\gamma}=K / \sqrt{g(K, K)}=e_{0}$. The observer carries along γ a "gyroscope" that is characterised by a "spin" vector-field $S \in \mathrm{ST}_{\gamma}(M)$ over γ, obeying

$$
\begin{equation*}
\mathrm{g}(\dot{\gamma}, \mathrm{~S})=0 \tag{8a}
\end{equation*}
$$

and

$$
\begin{equation*}
F_{\gamma} S:=\nabla_{\dot{\gamma}} S+g(\ddot{\gamma}, S) \dot{\gamma}-g(\dot{\gamma}, S) \ddot{\gamma}=0 \tag{8b}
\end{equation*}
$$

Show (or argue) that (8b) indeed preserves (8a) and that S has constant length $\|S\|=$ $\sqrt{-g(S, S)}$ along γ. Hence we may write

$$
\begin{equation*}
S=S^{a} e_{a} \tag{9}
\end{equation*}
$$

where the e_{a} are any three orthonormal vectors perpendicular to $\dot{\gamma}=e_{0}$ (at this point the e_{a} it need not be the stationary basis introduced above). We write $\vec{S}:=\left(S^{1}, S^{2}, S^{3}\right)$.

Show that (8b) is equivalent to

$$
\begin{equation*}
\dot{\vec{S}}=\overrightarrow{\mathrm{w}}_{\mathrm{T}} \times \overrightarrow{\mathrm{S}} \tag{10a}
\end{equation*}
$$

where

$$
\begin{equation*}
\vec{\omega}_{\mathrm{T}}:=\left(\omega_{\mathrm{T}}^{1}, \omega_{\mathrm{T}}^{2}, \omega_{\mathrm{T}}^{3}\right):=\left(\omega_{03}^{2}, \omega_{01}^{3}, \omega_{02}^{1}\right) \tag{10b}
\end{equation*}
$$

are the connection coefficient from $\nabla_{e_{\alpha}} e_{\beta}=\omega_{\alpha \beta}^{\gamma} e_{\gamma}$.
Show further that if we now specialise the spatial basis vectors e_{a} to be stationary, i.e. obey (7 c), then, defining as usual $K^{\downarrow}:=g(K, \cdot)$, we have $\left(\varepsilon^{123}=1\right.$ etc.)

$$
\begin{equation*}
\omega_{\mathrm{T}}^{\mathrm{a}}=\frac{1}{4} \varepsilon^{\mathrm{abc}} d K^{\downarrow}\left(e_{\mathrm{b}}, e_{\mathrm{c}}\right) /\|K\| \tag{11}
\end{equation*}
$$

Finally deduce from this the following geometric statement that is independent of any choice of bases: The spin vector $S \in S T_{\gamma}(M)$ precesses against the frame of stationarity (defined by a timelike Killing field) by the angular velocity $\omega_{T} \in S T_{\gamma}(M)$

$$
\begin{equation*}
\omega_{\mathrm{T}}=-\frac{1}{2}\left[\star\left(u^{\downarrow} \wedge d u^{\downarrow}\right)\right]^{\uparrow} \tag{12}
\end{equation*}
$$

where \star is the Hodge duality-map and $u=K / \sqrt{g(K, K)}$ is the normalised Killing field. Alternatively, introducing the angular-velocity 2 -form $\omega:=\mathfrak{i}_{\mathfrak{u}} \star \omega_{\mathrm{T}}^{\downarrow}$, we have

$$
\begin{equation*}
\omega:=\mathfrak{i}_{u} \star \omega_{T}^{\downarrow}=-\frac{1}{2} \mathfrak{i}_{u}\left(u^{\downarrow} \wedge d u^{\downarrow}\right)=-\frac{1}{2} \pi \otimes \pi\left(d u^{\downarrow}\right) \tag{13}
\end{equation*}
$$

where π is the projection perpendicular to u (as in Problem 4 of Sheet 4). Note that on p-forms in n dimensions and metric with n_{-}negative directions (signature (n_{+}, n_{-}) with $\left.\mathrm{n}=\mathrm{n}_{+}+\mathrm{n}_{-}\right)$, we have $\star \mathrm{o}^{\star}=(-1)^{\mathrm{p}(\mathrm{n}-\mathrm{p})+\mathrm{n}_{-}}$, which applied to our case $\mathrm{p}=3$, $n=4$, and $n=3$ gives $\star \circ \star=i d$. See DiffGeom-Notes (7.45,7.51).
Compare this with Problem 1 on Sheet 5 (the difference in the factor c^{2} results from the fact that there u was normalised to c rather than 1.) This shows that for stationary observers the vorticity 2 -form introduced earlier ist equivalent to $-\omega_{\mathrm{T}}$. This signdifference makes sense since "vorticity" is the angular velocity of the fluid against the inertial frame defined by torque-free suspended gyroscopes, whereas according to our definition here the Thomas precession ω_{T} represents the angular velocity of torque-free suspended gyroscopes against the stationary frame (realised by the observer "flowing" along the integral curves of the timelike Killing field. Sometimes ω_{T} is defined oppositely, i.e. as rotation of the stationary observer against the system defined by gyroscopes (e.g. in Straumann), in which case ω_{T} has the opposite sign to ours. We have chosen our convention because our ω_{T} corresponds to what is directly observed: The motion of torque-free suspended gyroscopes against the stationary frame that is (approximately) realised by the best-matched average rotational rest-frame of the background of "fixed stars".

