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Problem 1

Compute the mean energy-current density of a monochromatic plane gravitational
wave in the (+) – mode; that is h+(z−ct) = A cos

!
ω(z−ct)

"
, with ω = 2πν, where

ν is the frequency. What are the typical values obtained for amplitude A = 10−21 and
frequency 100Hz?

Tip: Use expression (13.41) of Lecture 13 for the mean energy-momentum tensor of a
plane wave in TT-gauge.

Problem 2

Like in Lecture 14 we consider a homogeneous rod (or slab) of total mass M, length
L and of quadratic cross section q = a2. It rotates with constant angular velocity ω

about an axis through its midpoint which is perpendicular to the length-direction of
the rod. In Lecture 14 we derived the following formula for the total GW-luminosity
(assuming a ≪ L)

L
(rod)
GW =

2

45
· G
c5

·ω6 ·M2 · L4 . (1)

Show that the centrifugal stress (force per area) acting along the cross section through
the midpoint is given by

σ = 1
2ρv

2 , (2)

where ρ = M/(qL) is the mass-density inside the rod and v = ωL/2 is the velocity
of the rod’s ends.

Show that if the rod is made from a material the breaking-stress of which is σmax, then
L
(rod)
GW is bounded from above by

L
(max)
GW =

1024

45
· G
c5

· q
2 · σ3

max

ρ
. (3)

Typical values are

! ρ σmax

steel 7, 85 g/cm3 2100 N/mm2

fiberglass 2, 5 g/cm3 4800 N/mm2
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Calculate Lmax
GW for these cases as well as the corresponding values vmax of the veloc-

ities of the ends. Note that both quantities are independent of the length L (as long as
our assumption a ≪ L holds).

Problem 3

We again consider the rotating rod of the previous problem, but now we are interested
in the amplitude of the emitted gravitational wave. In Lecture 14 we showed that the
amplitude of a circular polarised wave that is emitted parallel to the axis of rotation ist
given by

A(r) =
4Gω2

c4
· 1
r
· θ ′ . (4)

Here θ ′ is the moment of inertia of the rod with respect to the chosen axis, which is
θ ′
3 =

1
12ML2. Show that it is bounded above by

Amax(r) =
L

r
· 8
3

Gqσmax

c4︸ ︷︷ ︸
A∗

. (5)

Note that contrary to (3) this does not depend on ρ!

Calculate A∗ for steel and fiberglass and discuss the possibility to produce detectable
gravitational waves in the laboratory.

Problem 4

Once more we again consider the rotating rod of the previous two problems. This
time we are interested in the polarisations. In Lecture 14 we saw that the rotating
rod emits circular polarised waves parallel to the axis of rotation and linear polarised
waves perpendicular to it. Now we are interested in the polarisations if the line of sight
contains an angle α with the plane of rotation (i.e. an angle (π − α) with the rotation
axis).

Proceed as follows: In Lecture 14 we obtained the following expression for the ampli-
tude:

hTT (t,"x) =

#
2

3

$#
2GM

c2r

$#
Lω

2c

$2 %
cos(2ωt)Ψ+ + sin(2ωt)Ψ×

&TT
(6a)

where in terms of the basis {θa : a = 1, 2, 3} dual to the orthonormal basis {ea : a =
1, 2, 3} of euclidean space with e3 pointing in the direction of the rotation axis, we
have

Ψ+ := θ1 ⊗ θ1 − θ2 ⊗ θ2 ,

Ψ× := θ1 ⊗ θ2 + θ2 ⊗ θ1 .
(6b)

Now apply the TT projection for a line of sight parallel to

n = sin(α)e1 + cos(α)e3 (7)
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Note that this is a line of sight with inclination angle α against the axis of rotation or,
said differently, inclination angle (π− α) against the plane of rotation of the rod.

Using this n you must project each tensor-factor in Ψ+ and Ψ× into the plane per-
pendicular to n, which we call {n}⊥. The projection operator is P⊥

n = id − n ⊗ n↓.
On the dual vectors θa the projection acts like θa #→ θa ◦ P⊥

n . On the plane {n}⊥

you can use the orthonormal basis ē1 := cos(α)e1 − sin(α)e3 and ē2 := e2, and
their corresponding dual basis θ̄1 := cos(α)θ1 − sin(α)θ3 and θ̄2 := θ2. Use these
to form Ψ̄+ := (θ̄1 ⊗ θ̄1 − θ̄2 ⊗ θ̄2) and Ψ̄× := (θ̄1 ⊗ θ̄2 + θ̄2 ⊗ θ̄1). Show that
Ψ+ ◦P⊥

n ⊗P⊥
n = cos2(α)θ̄1⊗ θ̄1− θ̄2⊗ θ̄2, which upon suptraction of its trace part re-

sults in ΨTT
+ = 1

2(1+cos2(α))Ψ̄+. Similarly (easier, in fact) you get ΨTT
+ = cos(α)Ψ̄×.

As a result you get from (6a)

hTT (t, r) = h̄+(t, r)Ψ̄+ + h̄×(t, r) Ψ̄× . (8a)

where

h̄+(t, r) =

#
2

3

$#
2GM

c2r

$#
Lω

2c

$2

· 1+ cos2(α)
2

· cos(2ωt) , (8b)

h̄×(t, r) =

#
2

3

$#
2GM

c2r

$#
Lω

2c

$2

· cos(α) · sin(2ωt) . (8c)

This can be said to be an “elliptically polarised” wave. Explain why! Calculate the
eccentricity of the “ellipse” as a function of α.
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