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Problem 1

Calculate the gravitational-wave luminosity LGW of the Earth-Sun system.

Problem 2

The Crab-Nebula (also known as M1 or NGC 1952) contains a remnant of the Super-
nova SN 1054 (observed in the year 1054), which is the pulsar PSR B0531+21. Its
distance to us is 2000 pc ≈ 6500 ly. The pulse period is T = 3.35 · 10−2 s, which
increases with time at a rate of

Ṫ = 4.4 · 10−13 . (1)

Assume the pulsar were a homogeneous ball of radius 10Km and a mass 1.5 solar
masses. How big would according to (1) be the rate of change of its rotational energy
Ėrot?

Assume this loss of energy were due to the emission of gravitation waves (which it is
not, but let’s pretend for the moment). Recall that in Lecture 14 we derived (compare
(14.33)))

LGW =
32

5

G

c5
ω6(εθ)2 (2a)

for the gravitational-wave luminosity of a rigidly rotating body, where (compare
(14.25-26))

θ := I ′1 + I ′2 , ε :=
I ′1 − I ′2
I ′1 + I ′2

. (2b)

The I ′a are the principal 2nd moments of the mass distribution and the rotation axis
is assumed to be the third. How big would you estimate ε to be for −Ėrot = LGW

to hold? How big would the maximal gravitational-wave amplitude be on Earth? Tip:
Use (14.49).

Refine the above ball-model by assuming the pulsar to be a homogeneous solid ellip-
soid with axes a, b, and c:

E(a, b, c) :=

{
(x, y, z) ∈ R3 :

x2

a2
+

y2

b2
+

z2

c2
≤ 1

}
, (3)

where c = a = 10 km and b = a + δa with |δa| ≪ a. How large would δa have to
be in oder for −Ėrot = LGW to hold? Get some information on the maximal height of
“mountains” on neutron stars.
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Problem 3

As regards the Crab-Nebula, its energy loss is most likely due to magnetic dipole
radiation. For that we have Ėrot ∝ ω4.

Show that, in general, for Ėrot ∝ ωn+1, one has

T T̈

Ṫ 2
= 2− n . (4)

where the number
n :=

ω ω̈

ω̇2
. (5)

is the so-called “braking index”.

So what observations on the system (not its radiation) could - in principle - distinguish
between the different channels of energy loss? And in practice?

Problem 4

In Lecture 15 we considered lightlike geodesics in a static stacetime whose spatial
metric is conformally flat. We used that the spatial projection of the spacetime
geodesic is a geodesic in the optical metric ĝ of space, which is also conformally
flat: ĝ = n2δ, where δ is the flat (euclidean) metric of space. The discussion of spa-
tial light rays can then be given as if we were is flat euclidean space filled with an
optically active medium of diffraction index n. For weak gravitational fields we have
n(!x) = 1−2φ(!x)/c2, where φ is the Newtonian gravitational potential. All geometric
considerations that follow refer to the flat euclidean metric δ of space.

We consider a situation where the spatial light ray starts and ends in asymptotic regions
where φ tends to zero, but in the intermediate region encounters regions where φ ∕= 0.
If !ef and !ei are, respectively, the final and initial direction of the light ray. Then we
derived the following formula for the difference !α := !ef − !ei:

!α(!ξ) = −
4G

c2

∫

R2

d2ξ ′ Σ(!ξ ′)
!ξ− !ξ ′

‖!ξ− !ξ ′‖2
, (6a)

where !ξ = (x, y) and

Σ(ξ) :=

∫∞

−∞
dz ρ(x, y, z) . (6b)

This formula is valid to leading order in ‖!α‖ ≪ 1 and linear in φ/c2.

The task of this exercise is to derive a “lens map” from equation (6), i.e. a map that
relates the image on the Lens plane to the actual location of the objet on the Source
plane. See the image below.
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The figure on the left displays the geometric
relations for gravitational lensing. It shows
the Lens plane, parametrised by !ξ, and the
Source plane, parametrised by !η. θ and β are
the angles under which the source is seen, re-
spectively, with and without the lense. Dd

and Ds denote, respectively, the distances of
the observer to the Lens and Source plane;
and Dds := Ds − Dd. For small angles α

(the figure greately exaggerates the angle) we
have α̂ := !!α!, which is to be considered as
function of !ξ.

The lens map assigns to every point on the Lens plane a point of the Source plane.
Hence, with the given notation, it gives !η as function of ξ.

Show that
!η =

Ds

Dd

!ξ+Dds!α(!ξ) . (7)

Write this in dimensionless form by introducing length parameters ξ0 in the lens plane
and η0 := (Ds/Dd)ξ0 in the source plane. Instead of (!ξ,!η) use the variable !x := !ξ/ξ0
and !y := !η/η0. Then show, that (7) is equivalent to

!y(!x) := !∇ϕ(!x) , (8a)

where

ϕ(!x) := 1
2‖!x‖

2 −ψ(!x) , (8b)

ψ(!x) :=
1

π

∫

R2

ln
!
‖!x− !x ′‖

"
κ(!x ′)d2x ′ , (8c)

κ(!x) :=
4πG

c2
DdDds

Ds
Σ(ξ0!x) . (8d)

In this equation all vectors refer to R2

Show that the trace of the Hessian D2ψ at!x is given by 2κ(!x). In particular, it vanishes
outside the support of κ. What property of the lens map does that signify?

Problem 5

Specialise the lens map of the previous exercise to Σ(!ξ) = M δ(2)(!ξ). Choose the
scale ξ0 to equal the so-called “Einstein radius” RE,

ξ0 = RE :=

#
2 · 2GM

c2
· DdDds

Ds
(9)

and show that then
!y(!x) = !x

$
1− ‖!x‖−2

%
. (10)
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Invert equation (10) for ‖!x‖ ∕= 1 and write down !x as function of !y. Show that the
pre-image of the point !y = !0 on the Lens plane is a circle of radius RE; it is called an
“Einstein Ring”. See the picture below. It was taken by the Hubble-Space-Telescope
on December 21, 2011. The lensing mass is called LRG 3-757. Find out more about
it!

Picture of LRG 3-757 taken by the Hubble Space Telescope in 2011

Problem 6

Show from Maxwell’s equations that light rays are null geodesics along which the po-
larisation vector is covariantly constant. In addition, derive an equation that describes
how the amplitude changes along the light ray.

Proceed as follows: As usual, half of Maxwell’s equations, namely dF = 0, are solved
by F = dA; in components:

Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ . (11)

The other half of Maxwell’s equations reads with Jν = 0 (outside sources):

∇µFµν := gµλ∇λFµν = 0 . (12)

We impose the covariant Lorenz gauge

∇µAµ = 0 . (13)

Equation (12) reads (□ := gµν∇µ∇ν)

□Aµ − Rν
µAν = 0 . (14)

We note in passing that if Rν
µ ∕= 0 then the Lorenz gauge does not decouple the equa-

tions (unlike the ordinary Lorenz gauge in flat space-time). But this is not important
for what follows.
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In order to derive the laws of geometric optics in matter-free space-time we consider
solutions of (14) obeying (13) for vector potentials of the form

Aµ = (aµ + εbµ +O(2)) exp(iψ/ε) . (15)

The amplitude is developed in a power series in ε, i.e. aµ, bµ are vector fields and
O(2) denotes terms of quadratic or higher order in ε. ψ ist a real phase-function (the
so-called “Eikonal”). We introduce the following quantities

kµ : = ∇µψ wave vector , (16a)

a : =
&

gµνaµaν amplitude , (16b)

fµ : = aµ/a polarisation vector . (16c)

Insert (15) into (13) and (14) and consider the consequences for ε → 0 (the so-called
“geometric-optics-limit”). Order in increasing powers of ε, starting with ε−2, and set
all coefficients individially to zero. Show that for (13) this leads to

ε−2 : no condition , (17a)

ε−1 : kµaµ = 0 , (17b)

and for (14)

ε−2 : kµkµ = 0 , (18a)

ε−1 : kν∇νaµ = − 1
2(∇

νkν)aµ , (18b)

where (18a) has already been used in (18b).

Take ∇ν of kµkµ = 0 and use that fact that kµ is a gradient field, i.e. (16a), to show

kν∇νkµ = 0 . (19)

Now use (18b) to show
kν∇νa = − 1

2 a∇νkν . (20)

This last equation allows you to derive how the amplitude changes along the ray. Con-
sider fµ from (16c) and conclude, using (18b) and (20), that

kν∇νfµ = 0 . (21)

To sum up, it is now shown that the following results are consequences of Maxwell’s
equations in the short-wavelength limit, i.e. as ε → 0 and neglecting terms εn for
n ≥ 0: Light rays are lightlike geodesics (eqns. (18a) and (19)) along which the po-
larisation vector is perpendicular (eq. (17b)) and parallely transported (eq. (21)). The
amplitude changes according to (20) and hence increases/decreases if the divergence
of the lightlike vector field k is negative/positive, i.e. if k is focussing/diverging.
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