Übungen zur Vorlesung

Einführung in die Allgemeine Relativitätstheorie

von Domenico Giulini

Blatt 4

Aufgabe 1

Die Viererstromdichte einer Punktladung e, die sich auf einer Weltlinie $z^{\mu}(\tau)$ im Minkowskiraum bewegt (τ ist die Eigenzeit), ist gegeben durch

$$j^{\mu}(x) = e \int d\tau \, \delta^{(4)} \big(x - z(\tau) \big) \dot{z}^{\mu}(\tau) \,. \tag{1}$$

Zeigen Sie $\partial_{\mu} j^{\mu} = 0$.

Der Energie-Impuls-Tensor einer Punktmasse m, die sich entlang $z(\tau)$ bewegt, ist

$$\mathsf{T}^{\mu\nu}(x) = \mathsf{m} \int \mathsf{d}\tau \, \delta^{(4)} \big(x - z(\tau) \big) \, \dot{z}^{\mu}(\tau) \dot{z}^{\nu}(\tau) \,. \tag{2}$$

Zeigen Sie, dass $\partial_{\mu}T^{\mu\nu}=0$ genau dann gilt, wenn die Weltline eine Gerade ist. (Achtung: Sie haben es hier mit Distributionen zu tun.)

Aufgabe 2

Sei $\varphi:\mathbb{R}^4\to\mathbb{R}^4$ ein C^2 -Diffeomorphismus des Minkowskiraums, also eine Bijektion, die zusammen mit ihrer Umkehrung zweimal stetig differenzierbar ist. Wir fordern, dass φ eine Isometrie der Minkowski Metrik sei. Für die Komponenten $\eta_{\alpha b}=\text{diag}(1,-1,-1,-1)$ gilt dann (Matrixnotation):

$$\phi_*^{\mathsf{T}} \cdot \eta \cdot \phi_* = \eta \,. \tag{3}$$

Dabei ist ϕ_* die Jacobi Matrix mit Komponenten $\frac{\partial \phi^m}{\partial x^\alpha}$. Zeigen Sie, dass ϕ eine affine Abbildung sein muss und demnach eine inhomogene Lorentztransformation. (Tipp: Differenzieren Sie die α b-Komponente der Gleichung (3) nach x^c . Schreiben Sie die so erhaltene Gleichung noch zweimal auf, wobei Sie die Indizes α , b, c ein- bzw. zweimal zyklisch permutieren. Subtrahieren Sie die letzte Gleichung von der Summe der ersten beiden und deduzieren Sie das Behauptete.)

Aufgabe 3

Sei $\mathcal F$ der Vektorraum aller Abbildungen $F:\mathbb R^4\to V$, wobei V ein endlichdimensionaler reellen Vektorraum ist. Dieser trage eine Darstellung D der Gruppe $GL(4,\mathbb R)$ aller reellen invertierbaren 4×4 Matrizen. Sei ferner Diff die Gruppe aller C^1 -Diffeomorphismen (Bijektionen, die zusammen mit ihrer Umkehrung einmal stetig differenzierbar sind) des $\mathbb R^4$. Zeigen Sie, dass

$$\Delta: \textit{Diff} \times \mathcal{F} \to \mathcal{F}, \quad (\varphi, F) \mapsto \Delta(\varphi) \, F := (D(\varphi_*) \cdot F) \circ \varphi^{-1} \tag{4}$$

eine Darstellung von Diff auf \mathcal{F} definiert. (Achtung: $D(\varphi_*)$ ist eine matrixwertige Funktion auf \mathbb{R}^4 . Für Summen und Produkte von Funktionen gilt $(f+g) \circ \varphi = (f \circ \varphi) + (g \circ \varphi)$ und $(f \cdot g) \circ \varphi = (f \circ \varphi) \cdot (g \circ \varphi)$.)