Exercises for the lecture on
 Special Topics in GR \& Relativistic Cosmology

by Domenico Giulini

Sheet 1

Problem 1

The Poisson equation for the Newtonian gravitational potential ϕ reads

$$
\begin{equation*}
\Delta \phi=4 \pi \mathrm{G} \rho \tag{1}
\end{equation*}
$$

where $\rho \geq 0$ is the matter density.
Give the most general solution for constant ρ if space is A) \mathbb{R}^{3} and B) the round 3sphere S^{3} with radius R.

Problem 2

Consider a set of N point-masses $m_{a}, a=1, \cdots, N$, under the influence of their own gravitational attraction according to Newton's law. The 3 N equations of motion are given by

$$
\begin{equation*}
m_{a} \ddot{\vec{x}}_{\mathrm{a}}(\mathrm{t})=\sum_{\substack{\mathrm{b}=1 \\ \mathrm{~b} \neq \mathrm{a}}}^{\mathrm{N}} \mathrm{Gm}_{\mathrm{a}} \mathrm{~m}_{\mathrm{b}} \frac{\overrightarrow{\mathrm{x}}_{\mathrm{b}}(\mathrm{t})-\overrightarrow{\mathrm{x}}_{\mathrm{a}}(\mathrm{t})}{\left\|\vec{x}_{\mathrm{b}}(\mathrm{t})-\overrightarrow{\mathrm{x}}_{\mathrm{a}}(\mathrm{t})\right\|^{3}} \tag{2}
\end{equation*}
$$

Show that

$$
\begin{equation*}
m_{a} \ddot{\vec{x}}_{\mathrm{a}}(\mathrm{t})=-\vec{\nabla}_{\mathrm{a}} \mathrm{~V}\left(\overrightarrow{\mathrm{x}}_{1}(\mathrm{t}), \cdots, \vec{x}_{\mathrm{N}}(\mathrm{t})\right) \tag{3a}
\end{equation*}
$$

where $\vec{\nabla}_{\mathrm{a}}:=\partial / \partial \vec{x}_{\mathrm{a}}$ and

$$
\begin{equation*}
V\left(\vec{x}_{1}, \cdots, \vec{x}_{N}\right)=-\frac{1}{2} \sum_{\substack{a, b=1 \\ a \neq b}}^{N} \frac{G m_{a} m_{b}}{\left\|\vec{x}_{b}-\vec{x}_{a}\right\|} \tag{3b}
\end{equation*}
$$

Show further that

$$
\begin{equation*}
\sum_{\mathrm{a}=1}^{\mathrm{N}} \overrightarrow{\mathrm{x}}_{\mathrm{a}} \cdot \vec{\nabla}_{\mathrm{a}} \mathrm{~V}=-\mathrm{V} \tag{4}
\end{equation*}
$$

Problem 3

This is a continuation of the pervious problem.
Seek solutions of (3) of the form (called "homothetic motions")

$$
\begin{equation*}
\vec{x}_{a}(\mathrm{t})=\mathrm{a}(\mathrm{t}) \overrightarrow{\mathrm{y}}_{\mathrm{a}} \tag{5}
\end{equation*}
$$

with the same non-negative function $a(t)$ for all a and N time-independent vectors \vec{y}_{a}. Any N-tuple of vectors $\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right)$ for which a solution to (2) exists is called a central configuration. The aim of this and the following problems is to discuss, as complete as possible here, the restrictions the equations of motion (3) imposes onto the function $a(t)$ and upon the locations \vec{y}_{a}.

Show first that $a(t)$ must satisfy a differential equation of the form

$$
\begin{equation*}
\frac{1}{2} \dot{\mathrm{a}}^{2}+\frac{C}{a}=E \tag{6}
\end{equation*}
$$

where C and E are constants. Furthermore, show that the constant C is given by

$$
\begin{equation*}
C:=\ddot{a} a^{2}=\frac{V\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right)}{\sum_{a=1}^{N} m_{a}\left\|\vec{y}_{a}\right\|^{2}}=-K<0 \tag{7}
\end{equation*}
$$

and hence negative. The modulus of C is called κ.

Problem 4

Find solutions of (3) for negative, zero, and positive E.

Problem 5

Show that if $\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right)$ is a central configuration, so is $\left(c \vec{y}_{1}, \cdots, c \vec{y}_{N}\right)$, where $c \in$ $\mathbb{R}-\{0\}$. Argue that therefore the search for central configurations may without loss of generality be be restricted to those on the $(3 N-1)$-dimensional ellipsoid

$$
\begin{equation*}
\sum_{a=1}^{N} m_{a}\left\|\vec{y}_{a}\right\|^{2}=1 \tag{8}
\end{equation*}
$$

Show further that if $\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right)$ is a central configuration, so is $\left(D \vec{y}_{1}, \cdots, D \vec{y}_{N}\right)$, where $D \in S O(3)$ is a rotation matrix.

Problem 6

Show that the condition for $\left(\vec{y}_{1}, \cdots, \vec{y} N\right)$ being a central configuration is equivalent to (as in (7) we write $\kappa:=-C$, so as to have $\kappa>0$)

$$
\begin{equation*}
\kappa m_{a} \vec{y}_{a}+\sum_{\substack{b=1 \\ b \neq a}}^{N} G m_{a} m_{b} \frac{\vec{y}_{b}-\vec{y}_{a}}{\left\|\vec{y}_{b}-\vec{y}_{a}\right\|^{3}}=0 \tag{9}
\end{equation*}
$$

Show that this implies

$$
\begin{equation*}
\sum_{a=1}^{N} m_{a} \vec{y}_{a}=\overrightarrow{0} \tag{10}
\end{equation*}
$$

Show the general identity ($M=\sum_{a} \mathfrak{m}_{a}$ denotes the total mass)

$$
\begin{equation*}
\mathfrak{m}_{a} \vec{y}_{a}=\frac{1}{M} \sum_{\substack{b=1 \\ b \neq a}}^{N} \mathfrak{m}_{a} \mathfrak{m}_{b}\left(\vec{y}_{a}-\vec{y}_{b}\right)+\frac{\mathfrak{m}_{a}}{M} \sum_{b=1}^{N} \mathfrak{m}_{b} \vec{y}_{b} \tag{11}
\end{equation*}
$$

Use this and (10) to rewrite (9) as

$$
\begin{equation*}
\sum_{\substack{b=1 \\ b \neq a}}^{N} \overrightarrow{\mathrm{~F}}_{a b}=\overrightarrow{0} \tag{12a}
\end{equation*}
$$

where

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}_{\mathrm{ab}}=\mathfrak{m}_{\mathrm{a}} \mathfrak{m}_{\mathrm{b}}\left(\overrightarrow{\mathrm{y}}_{\mathrm{a}}-\overrightarrow{\mathrm{y}}_{\mathrm{b}}\right)\left(\frac{\kappa}{M}-\frac{\mathrm{G}}{\mathrm{r}_{\mathrm{ab}}^{3}}\right) \tag{12b}
\end{equation*}
$$

and $r_{a b}:=\left\|\vec{y}_{a}-\vec{y}_{b}\right\|$ denote the mutual distances.
Hence special central configurations are given if the N mass points can be arranged in such a way that all 2-particle distances are the same and equal to

$$
\begin{equation*}
r_{a b}=\left(\frac{M G}{\kappa}\right)^{1 / 3} \tag{13}
\end{equation*}
$$

Note the remarkable fact that this holds independent of whether the masses making up M are equal or vastly different. What would possible configurations for $N=2,3,4$ be? What about $\mathrm{N}=5$?

Another interpretation of equation (9) is by seeking the stationary points of the positive real-valued function $F\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right):=-V\left(\vec{y}_{1}, \cdots, \vec{y}_{N}\right)$ with constraints (Nebenbedingungen) that $\left\|\vec{y}_{\mathrm{a}}\right\|=\mathrm{R}$ for all a . Mathematically the stationary points correspond to the lowest energy configuration of N positive charges placed on a 2 -sphere of radius R. This lends some physical intuition to central configurations.

