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Problem 1

The Poisson equation for the Newtonian gravitational potential φ reads

∆φ = 4πGρ , (1)

where ρ ≥ 0 is the matter density.

Give the most general solution for constant ρ if space is A) R3 and B) the round 3-
sphere S3 with radius R.

Problem 2

Consider a set of N point-masses ma, a = 1, · · · , N, under the influence of their own
gravitational attraction according to Newton’s law. The 3N equations of motion are
given by

ma!̈xa(t) =

N!

b=1
b ∕=a

Gmamb
!xb(t)− !xa(t)

‖!xb(t)− !xa(t)‖3
. (2)

Show that
ma!̈xa(t) = −!∇aV

!
!x1(t), · · · ,!xN(t)

"
, (3a)

where !∇a := ∂/∂!xa and

V(!x1, · · · ,!xN) = −
1

2

N!

a,b=1
a ∕=b

Gmamb

‖!xb − !xa‖
. (3b)

Show further that
N!

a=1

!xa · !∇aV = −V . (4)

Special Topics in GR, WS 2020/21
qig.itp.uni-hannover.de/∼giulini/

1/3



Problem 3

This is a continuation of the pervious problem.

Seek solutions of (3) of the form (called “homothetic motions”)

!xa(t) = a(t)!ya (5)

with the same non-negative function a(t) for all a and N time-independent vectors
!ya. Any N-tuple of vectors (!y1, · · · ,!yN) for which a solution to (2) exists is called
a central configuration. The aim of this and the following problems is to discuss, as
complete as possible here, the restrictions the equations of motion (3) imposes onto
the function a(t) and upon the locations !ya.

Show first that a(t) must satisfy a differential equation of the form

1
2 ȧ

2 +
C

a
= E (6)

where C and E are constants. Furthermore, show that the constant C is given by

C := äa2 =
V(!y1, · · · ,!yN)"N

a=1ma‖!ya‖2
= −κ < 0 (7)

and hence negative. The modulus of C is called κ.

Problem 4

Find solutions of (3) for negative, zero, and positive E.

Problem 5

Show that if (!y1, · · · ,!yN) is a central configuration, so is (c!y1, · · · , c!yN), where c ∈
R− {0}. Argue that therefore the search for central configurations may without loss of
generality be be restricted to those on the (3N− 1)-dimensional ellipsoid

N!

a=1

ma‖!ya‖2 = 1 . (8)

Show further that if (!y1, · · · ,!yN) is a central configuration, so is (D!y1, · · · , D!yN),
where D ∈ SO(3) is a rotation matrix.

Problem 6

Show that the condition for (!y1, · · · ,!yN) being a central configuration is equivalent to
(as in (7) we write κ := −C, so as to have κ > 0)

κma!ya +

N!

b=1
b ∕=a

Gmamb
!yb − !ya

‖!yb − !ya‖3
= 0 . (9)
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Show that this implies
N!

a=1

ma!ya = !0 . (10)

Show the general identity (M =
"

ama denotes the total mass)

ma!ya =
1

M

N!

b=1
b ∕=a

mamb(!ya − !yb) +
ma

M

N!

b=1

mb!yb . (11)

Use this and (10) to rewrite (9) as

N!

b=1
b ∕=a

!Fab = !0 , (12a)

where
!Fab = mamb(!ya − !yb)

#
κ

M
−

G

r3ab

$
(12b)

and rab := ‖!ya − !yb‖ denote the mutual distances.

Hence special central configurations are given if the N mass points can be arranged in
such a way that all 2-particle distances are the same and equal to

rab =

#
MG

κ

$1/3

. (13)

Note the remarkable fact that this holds independent of whether the masses making up
M are equal or vastly different. What would possible configurations for N = 2, 3, 4

be? What about N = 5?

Another interpretation of equation (9) is by seeking the stationary points of the positive
real-valued function F(!y1, · · · ,!yN) := −V(!y1, · · · ,!yN) with constraints (Nebenbe-
dingungen) that ‖!ya‖ = R for all a. Mathematically the stationary points correspond
to the lowest energy configuration of N positive charges placed on a 2-sphere of radius
R. This lends some physical intuition to central configurations.
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