Exercises for the lecture on
 Special Topics in GR \& Relativistic Cosmology

by Domenico Giulini

Sheet 2

Problem 1

Consider Newtonian Mechanics in which the inertial structure differs from the standard one in the following sense: Spacetime is a 4-dimensional real affine space which upon choosing a basis we identify with $\mathbb{R} \times \mathbb{R}^{3}$. The usual inertial structure is that in which force-free motion defines curves $\lambda \mapsto(t(\lambda), \vec{x}(\lambda))$ so that $\dot{t}=1$ and $\ddot{\vec{x}}=\overrightarrow{0}$. The modified inertial structure is that in which a particular homothetic motion

$$
\begin{equation*}
\dot{\vec{x}}(\mathrm{t})=\frac{\dot{R}(\mathrm{t})}{\mathrm{R}(\mathrm{t})} \vec{x}(\mathrm{t}) \tag{1}
\end{equation*}
$$

is force free, for some specified function $t \mapsto R(t)$. The corresponding modified Newtonian equation of motion for a point particle of mass m is then obtained by letting the force be equal to the acceleration relative to the homothetic (inertial) motion.

Show that this results in

$$
\begin{equation*}
\overrightarrow{\mathrm{F}}=m(\ddot{\vec{x}}-(\ddot{\mathrm{R}} / R) \vec{x}) \tag{2}
\end{equation*}
$$

Imagine you live in such a space (universe) and you release a point mass at time $t=1$ at $\vec{x}=(r, 0,0)$ with vanishing velocity $\dot{\vec{x}}(1)=\overrightarrow{0}$. Discuss its motion if
A) $R(t) \propto t^{2 / 3}$,
B) $R(t) \propto \exp (\lambda t)$ for $\lambda>0$ and $\lambda<0$.

Problem 2

Consider again the modified Newtonian equation of motion (2) in an exponentially expanding universe $R(t) \propto \exp (\lambda t), \lambda>0$. Specialise to the Kepler-Problem where $\overrightarrow{\mathrm{F}}=-\mathrm{m} \vec{\nabla} \mathrm{V}$ an $\mathrm{V}=\mathrm{V}(\mathrm{r})=-\mathrm{C} / \mathrm{r}$ with $\mathrm{C}>0$ and $\mathrm{r}:=\|\overrightarrow{\mathrm{x}}\|$.

Give a qualitative discussion of the motion in terms of the effective potential for the one-dimensional motion in r after using angular-momentum conservation. Discuss and explain the dependence of the radius of a bound stable circular orbit of fixed angular momentum upon the value of λ. Show that there exists a critical radius

$$
\begin{equation*}
r_{c}:=\left(\frac{C}{\lambda^{2}}\right)^{1 / 3} \tag{3}
\end{equation*}
$$

above which no bound circular orbit exists. Calculate the approximate value of r_{c}, given that $\lambda^{2}=-\mathrm{H}_{0}^{2} q_{0}$ (prove that) and that the approximate values for the Hubble constant and deceleration parameter are

$$
\begin{equation*}
\mathrm{H}_{0}:=\left.\frac{\dot{\mathrm{a}}}{\mathrm{a}}\right|_{\mathrm{t}=\mathrm{t}_{0}} \approx 70 \mathrm{~km} \cdot \mathrm{~s}^{-1} \cdot(\mathrm{Mpc})^{-1}, \quad \mathrm{q}_{0}:=-\left.\frac{\mathrm{a} \ddot{\mathrm{a}}}{\dot{\mathrm{a}}^{2}}\right|_{\mathrm{t}=\mathrm{t}_{0}} \approx-0.6 . \tag{4}
\end{equation*}
$$

Problem 3

We represent Minkowski space by $\left(\mathbb{R}^{4}, \eta\right)$, where with respect to standard coordinates $\chi^{\alpha}=(c t, \vec{x})$ we have $\eta_{\alpha \beta}=\operatorname{diag}(1,-1,-1,-1)$. We write: $\eta(x, x)=\eta_{\alpha \beta} \chi^{\alpha} \chi^{\beta}=$ $c^{2} t^{2}-r^{2}$, where $r^{2}=\vec{x} \cdot \vec{x}$.

In Minkowski space we regard the "wedge-region" W given by

$$
\begin{equation*}
W:=\left\{(c t, \vec{x}) \in \mathbb{R}^{4}: c t>r\right\} . \tag{5}
\end{equation*}
$$

In W we define the radial vector field

$$
\begin{equation*}
u=c \frac{x^{\alpha}}{\sqrt{\eta(x, x)}} \partial_{\alpha} . \tag{6}
\end{equation*}
$$

Show by direct calculation that it is geodesic and parametrised by proper time (arclength divided by c). Give a simple argument (without any calculation) as to why the geodesic nature is obvious.
Now regard (W, η, u) as a cosmological model for $\Lambda=0$ and in the limiting case of vanishing energy-momentum tensor. We chose coordinates $(\tau, \rho, \theta, \varphi)$ in W according to

$$
\begin{align*}
c t & =c \tau \cosh (\rho), \tag{7a}\\
\vec{x} & =c \tau \sinh (\rho) \vec{n}, \tag{7b}
\end{align*}
$$

where

$$
\vec{n}=\left(\begin{array}{c}
\sin \theta \cos \varphi \tag{7c}\\
\sin \theta \sin \varphi \\
\cos \theta
\end{array}\right)
$$

Show that

$$
\begin{equation*}
\eta=c d \tau \otimes c d \tau-a^{2}(\tau) h \tag{8a}
\end{equation*}
$$

where

$$
\begin{equation*}
a(\tau)=c \tau \tag{8b}
\end{equation*}
$$

is the "scale factor" and

$$
\begin{equation*}
h=d \rho \otimes d \rho+\sinh ^{2}(\rho)\left(d \theta \otimes d \theta+\sin ^{2}(\theta) d \varphi \otimes d \varphi\right) \tag{8c}
\end{equation*}
$$

is a 3-dimensional Riemannian metric on \mathbb{R}^{3} with polar coordinates (ρ, θ, φ).

Problem 4

This problem continues the previous one.
Prove that ρ represents the geodesic distance with respect to h of the respective point with the origin $\rho=0$.

Calculate all curvature components of h (best with respect to orthonormal frame using Cartan's structure equations; see GR-lecture last semester) and show that $\left(\mathbb{R}^{3}, h\right)$ is of constant sectional curvature $-1 .\left(\mathbb{R}^{3}, h\right)$ is also a maximally symmetric manifold with 6-dimensional isometry group $\operatorname{Isom}\left(\mathbb{R}^{3}, h\right)$. What is that group? (You know it!) Characterise its subgroups $\operatorname{Isom}_{p}\left(\mathbb{R}^{3}, h\right)$ and $\operatorname{Isom}_{(p, u(p))}\left(\mathbb{R}^{3}, h\right)$ (compare Lecture 4).

This establishes (W, η, u) as an open (i.e. negatively curved space) FLRW-universe with flat spacetime! It is called the Milne Universe.

Problem 5

We are still in the Milne Universe with metric (8).
Show that a light signal sent by the comoving observer at position $\rho_{1}=0$ and eigentime τ_{1} to the comoving observer at $\rho_{0}>0$ will be received there at eigentime

$$
\begin{equation*}
\tau_{0}=\tau_{1} \exp \left(\rho_{0}\right) \tag{9}
\end{equation*}
$$

Suppose the light signal is monochromatic with frequency v_{1} (measured with respect to proper time of observer at ρ_{1}). When received by the comoving observer at $\rho_{0}>0$ it will have frequency v_{0} (measured with respect to proper time of the observer at ρ_{0}). Calculate the redshift factor

$$
\begin{equation*}
z=\frac{v_{1}-v_{0}}{v_{0}} \tag{10}
\end{equation*}
$$

as a function of ρ_{0} (the proper simultaneous distance).

