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Problem 1

Consider Newtonian Mechanics in which the inertial structure differs from the standard
one in the following sense: Spacetime is a 4-dimensional real affine space which upon
choosing a basis we identify with R× R3. The usual inertial structure is that in which
force-free motion defines curves λ "→

!
t(λ) , !x(λ)

"
so that ṫ = 1 and !̈x = !0. The

modified inertial structure is that in which a particular homothetic motion

!̇x(t) =
Ṙ(t)

R(t)
!x(t) (1)

is force free, for some specified function t "→ R(t). The corresponding modified New-
tonian equation of motion for a point particle of mass m is then obtained by letting the
force be equal to the acceleration relative to the homothetic (inertial) motion.

Show that this results in
!F = m

#
!̈x− (R̈/R)!x

$
. (2)

Imagine you live in such a space (universe) and you release a point mass at time t = 1

at !x = (r, 0, 0) with vanishing velocity !̇x(1) = !0. Discuss its motion if

A) R(t) ∝ t2/3,

B) R(t) ∝ exp(λt) for λ > 0 and λ < 0.

Problem 2

Consider again the modified Newtonian equation of motion (2) in an exponentially
expanding universe R(t) ∝ exp(λt), λ > 0. Specialise to the Kepler-Problem where
!F = −m!∇V an V = V(r) = −C/r with C > 0 and r := ‖!x‖.

Give a qualitative discussion of the motion in terms of the effective potential for the
one-dimensional motion in r after using angular-momentum conservation. Discuss and
explain the dependence of the radius of a bound stable circular orbit of fixed angular
momentum upon the value of λ. Show that there exists a critical radius

rc :=

%
C

λ2

&1/3

(3)
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above which no bound circular orbit exists. Calculate the approximate value of rc,
given that λ2 = −H2

0q0 (prove that) and that the approximate values for the Hubble
constant and deceleration parameter are

H0 :=
ȧ

a

'''
t=t0

≈ 70 km · s−1 · (Mpc)−1 , q0 := −
aä

ȧ2

'''
t=t0

≈ − 0.6 . (4)

Problem 3

We represent Minkowski space by (R4,η), where with respect to standard coordinates
xα = (ct,!x) we have ηαβ = diag(1,−1,−1,−1). We write: η(x, x) = ηαβx

αxβ =
c2t2 − r2, where r2 = !x · !x.

In Minkowski space we regard the “wedge-region” W given by

W := {(ct,!x) ∈ R4 : ct > r} . (5)

In W we define the radial vector field

u = c
xα(
η(x, x)

∂α . (6)

Show by direct calculation that it is geodesic and parametrised by proper time (arc-
length divided by c). Give a simple argument (without any calculation) as to why the
geodesic nature is obvious.

Now regard (W,η, u) as a cosmological model for Λ = 0 and in the limiting case of
vanishing energy-momentum tensor. We chose coordinates (τ, ρ, θ,ϕ) in W according
to

ct = cτ cosh(ρ) , (7a)
!x = cτ sinh(ρ) !n , (7b)

where

!n =

)

*
sin θ cosϕ
sin θ sinϕ

cos θ

+

, . (7c)

Show that
η = cdτ⊗ cdτ− a2(τ)h (8a)

where
a(τ) = cτ (8b)

is the “scale factor” and

h = dρ⊗ dρ+ sinh2(ρ)
!
dθ⊗ dθ+ sin2(θ)dϕ⊗ dϕ

"
(8c)

is a 3-dimensional Riemannian metric on R3 with polar coordinates (ρ, θ,ϕ).
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Problem 4

This problem continues the previous one.

Prove that ρ represents the geodesic distance with respect to h of the respective point
with the origin ρ = 0.

Calculate all curvature components of h (best with respect to orthonormal frame using
Cartan’s structure equations; see GR-lecture last semester) and show that (R3, h) is of
constant sectional curvature −1. (R3, h) is also a maximally symmetric manifold with
6-dimensional isometry group Isom(R3, h). What is that group? (You know it!) Cha-
racterise its subgroups Isomp(R3, h) and Isom(p,u(p))(R3, h) (compare Lecture 4).

This establishes (W,η, u) as an open (i.e. negatively curved space) FLRW-universe
with flat spacetime! It is called the Milne Universe.

Problem 5

We are still in the Milne Universe with metric (8).

Show that a light signal sent by the comoving observer at position ρ1 = 0 and eigenti-
me τ1 to the comoving observer at ρ0 > 0 will be received there at eigentime

τ0 = τ1 exp(ρ0) . (9)

Suppose the light signal is monochromatic with frequency ν1 (measured with respect
to proper time of observer at ρ1). When received by the comoving observer at ρ0 > 0

it will have frequency ν0 (measured with respect to proper time of the observer at ρ0).
Calculate the redshift factor

z =
ν1 − ν0

ν0
(10)

as a function of ρ0 (the proper simultaneous distance).
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