Exercises for the lecture on
 Special Topics in GR \& Relativistic Cosmology

by Domenico Giulini

Sheet 3

Problem 1

Consider the FLRW metric in coordinates (compare Lecture 4, equations (4.30-31))

$$
\begin{equation*}
g=c d t \otimes c d t-a^{2}(t)\left(d x \otimes d x+\Sigma^{2}(x)\left(d \theta \otimes d \theta+\sin ^{2}(\theta) d \varphi \otimes d \varphi\right)\right) \tag{1}
\end{equation*}
$$

where

$$
\Sigma(\chi)= \begin{cases}\sin (\chi) & \text { for } k=1 \tag{2}\\ \chi & \text { for } k=0 \\ \sinh (\chi) & \text { for } k=-1\end{cases}
$$

We are interested in the timelike geodesics.
Write down the Euler-Lagrange equation for the energy functional.
Prove that "radial" initial conditions with vanishing $\dot{\theta}$ and $\dot{\varphi}$ lead to constant values (equal to the initial ones) for (θ, φ); that is, the motion stays radial.

Argue why this solves the most general geodesic motion, even though the initial conditions seem special.

Prove that

$$
\begin{equation*}
\mathrm{pa}=\text { const } ., \tag{3}
\end{equation*}
$$

along the geodesic, where $p=p(\lambda)$ is the particle's 3-momentum with respect to the local observer defined by the cosmological four-velocity $u=\partial / \partial t$.
How do you interpret (3)? Does it violate momentum conservation in an expanding universe?

Problem 2

Consider the energy-momentum tensor of a perfect fluid by

$$
\begin{equation*}
T=\left(\rho+p / c^{2}\right) u \otimes u-g^{-1} p \tag{4}
\end{equation*}
$$

or in components

$$
\begin{equation*}
T^{\alpha \beta}=\left(\rho+p / c^{2}\right) u^{\alpha} u^{\beta}-g^{\alpha \beta} p . \tag{5}
\end{equation*}
$$

Here g^{-1} is the inverse metric, u the four-velocity of the fluid, ρ its rest-mass-density, and p its pressure in its rest frame. The metric is that of a FLRW spacetime:

$$
\begin{equation*}
g=d x^{0} \otimes d x^{0}-a^{2}\left(x^{0}\right) \hat{g} \tag{6}
\end{equation*}
$$

where \hat{g} is of constant curvature $k \in\{1,-1,0\}$. Calculate its covariant divergence $\nabla \cdot \mathrm{T}$ (in components $\nabla_{\alpha} \mathrm{T}^{\alpha \beta}$) and express it in a an orthonormal basis $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$ (dual basis $\left\{\theta^{\alpha}\right\}$) with respect to g in which $e_{0}=u / \mathrm{c}$. Recall that for that basis we explicitly calculated the connection 1 -forms Lecture 4 . For us here only the result $\omega^{a}{ }_{0}=(a, 0 / a) \theta^{a}$ will be needed, where $a_{, 0}=e_{0}(a)=\partial a / \partial x^{0}$. Alternatively, you can use the coordinate form using the Christoffel symbols that we calculated in Lecture 5. (You may convince yourself that the index-free calculation is shorter.)

Prove that the vanishing of the covariant divergence of (4) in the metric (6) is equivalent to

$$
\begin{equation*}
e_{0}\left(\rho \mathrm{a}^{3}\right)+\left(\mathrm{p} / \mathrm{c}^{2}\right) e_{0}\left(\mathrm{a}^{3}\right)=0 \quad \text { and } \quad e_{a}(p)=0 \tag{7}
\end{equation*}
$$

Note that since $e_{0}=\partial / \partial x^{0}$ this is equivalent to

$$
\begin{equation*}
\left(\rho \mathrm{a}^{3}\right)^{\cdot}+\left(\mathrm{p} / \mathrm{c}^{2}\right)\left(\mathrm{a}^{3}\right)^{\cdot}=0 \quad \text { and } \quad \mathrm{p}=\mathrm{p}(\mathrm{t}) . \tag{8}
\end{equation*}
$$

It is interesting to note that the spatial constancy of ρ is not implied by these conditions.

Problem 3

Consider two metrics g and \tilde{g} on space-time M which are conformally equivalent. This means that there is a positive function $a: M \rightarrow \mathbb{R}_{+}$such that

$$
\begin{equation*}
g=a^{2} \tilde{g} . \tag{9}
\end{equation*}
$$

Let χ^{α} be a local coordinate system with respect to which we express the components $g_{\alpha \beta}$ and $\tilde{g}_{\alpha \beta}$ and their respective Christoffel symbols. Show that they are related by

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}=\tilde{\Gamma}_{\beta \gamma}^{\alpha}+\left(-\tilde{g}^{\alpha \lambda} \tilde{\mathfrak{g}}_{\beta \gamma} \frac{a_{, \lambda}}{a}+\delta_{\beta}^{\alpha} \frac{a_{, \gamma}}{a}+\delta_{\gamma}^{\alpha} \frac{a_{, \beta}}{a}\right) \tag{10}
\end{equation*}
$$

Here we write as usual $a_{, \alpha}:=\partial a / \partial x^{\alpha}$, etc.
Let $z: \mathbb{R} \supseteq \mathrm{I} \rightarrow M$ be a lightlike geodesic on (M, g). Show that the geodesic equation for its coordinate representation $z^{\alpha}=\chi^{\alpha} \circ z, \lambda \mapsto z^{\alpha}(\lambda)$, is equivalent to

$$
\begin{equation*}
\ddot{z}^{\alpha}+\left(\tilde{\Gamma}_{\beta \gamma}^{\alpha} \circ z\right) \dot{z}^{\beta} \dot{z}^{\beta}=-2 \frac{(a \circ z)^{\dot{0}}}{(a \circ z)} \dot{z}^{\alpha} . \tag{11}
\end{equation*}
$$

Now consider a reparametrisation diffeomorphism

$$
\begin{equation*}
\mathrm{f}: \mathbb{R} \supseteq \mathrm{I} \rightarrow \mathrm{I}^{\prime} \subseteq \mathbb{R} \tag{12}
\end{equation*}
$$

and the corresponding reparametrised curve

$$
\begin{equation*}
y:=z \circ f^{-1} . \tag{13}
\end{equation*}
$$

Show that (11) is equivalent to

$$
\begin{equation*}
\ddot{y}^{\alpha}+\left(\tilde{\Gamma}_{\beta \gamma}^{\alpha} \circ y\right) \dot{y}^{\beta} \dot{y}^{\beta}=\dot{y}^{\alpha}\left[\frac{\ddot{h}}{\dot{h}}-2 \frac{(a \circ y)}{(a \circ y)}\right], \tag{14}
\end{equation*}
$$

where $h:=f^{-1}$.

Problem 4

Use the results of Problem 2 to prove the following theorem: The curve z is a lightlike geodesic for (M, g) if and only if the reparametrised curve $y=z \circ f^{-1}$ is a lightlike geodesic for (M, \tilde{g}) where the reparametrisation map $f: I \ni \lambda \mapsto \tilde{\lambda}:=f(\lambda) \in \tilde{I}$ and its inverse $h:=f^{-1}: \tilde{I} \ni \tilde{\lambda} \mapsto \lambda:=h(\tilde{\lambda}) \in I$ satisfie any of the two equivalent conditions (show the equivlence):

$$
\begin{equation*}
\frac{\ddot{f}}{\dot{f}}=-2 \frac{(a \circ z)}{(a \circ z)} \quad \Longleftrightarrow \quad \frac{\ddot{h}}{\dot{h}}=2 \frac{(a \circ y)}{(a \circ y)} \tag{15}
\end{equation*}
$$

which in turn are are equivalent to

$$
\begin{equation*}
\tilde{\lambda}=f(\lambda)=C \int_{\lambda_{0}}^{\lambda} \frac{d \lambda^{\prime}}{a^{2}\left(z\left(\lambda^{\prime}\right)\right)} \quad \Longleftrightarrow \quad \lambda=h(\tilde{\lambda})=\tilde{C} \int_{\tilde{\lambda}_{0}}^{\tilde{\lambda}} d \tilde{\lambda}^{\prime} a^{2}\left(y\left(\tilde{\lambda}^{\prime}\right)\right) \tag{16}
\end{equation*}
$$

Problem 5

We now apply the foregoing "warped-product" metrics of FLRW form

$$
\begin{equation*}
g=d x^{0} \otimes d x^{0}-a^{2}\left(x^{0}\right) \hat{g}_{a b} d x^{a} \otimes d x^{b} \tag{17}
\end{equation*}
$$

where \hat{g} is independent of χ^{0} and not necessarily of constant curvature (hence this class is more general than FLRW).
We write this in the form (9) with

$$
\begin{equation*}
\tilde{g}=d \eta \otimes d \eta-\hat{g} \tag{18}
\end{equation*}
$$

where the coordinate η is defined in terms of the coordinate x^{0} by

$$
\begin{equation*}
\eta\left(x^{0}\right)=\int_{c}^{x^{0}} \frac{d x^{\prime 0}}{a\left(x^{\prime 0}\right)} \tag{19}
\end{equation*}
$$

and is called the conformal time.
Show that the geodesics of \tilde{g} are given by $\tilde{\lambda} \mapsto(\eta(\tilde{\lambda}), \vec{\chi}(\tilde{\lambda}))$, where $\eta(\tilde{\lambda})=a \tilde{\lambda}+b$ and $\vec{\chi}(\tilde{\lambda})$ is a geodesic of \hat{g}. Hence for $a \neq 0$ we conclude that along such a geodesic η grows proportional to the affine parameter, i.e. is itself an affine parameter. Moreover, if the geodesic is lightlike this parameter is affinely equivalent to the proper length in (\widehat{M}, \widehat{g}) (compare Lecture 5).
Use this and the second equation in (16) to derive the following expression for the value of the affine parameter λ along a lightlike geodesic $\lambda \mapsto\left(\chi^{0}(\lambda), \vec{\chi}(\lambda)\right)$ at the instant it hits the constant-time hypersurface χ^{0} :

$$
\begin{equation*}
\lambda\left(x^{0}\right)=C \int_{k}^{x^{0}} d x^{10} a\left(x^{10}\right) \tag{20}
\end{equation*}
$$

