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Problem 1

Consider the FLRW metric in coordinates (compare Lecture 4, equations (4.30-31))

g = cdt⊗ cdt− a2(t)
!
dχ⊗ dχ+ Σ2(χ)

"
dθ⊗ dθ+ sin2(θ)dϕ⊗ dϕ

#$
, (1)

where

Σ(χ) =






sin(χ) for k = 1

χ for k = 0

sinh(χ) for k = −1 .

(2)

We are interested in the timelike geodesics.

Write down the Euler-Lagrange equation for the energy functional.

Prove that “radial” initial conditions with vanishing θ̇ and ϕ̇ lead to constant values
(equal to the initial ones) for (θ,ϕ); that is, the motion stays radial.

Argue why this solves the most general geodesic motion, even though the initial con-
ditions seem special.

Prove that
pa = const. , (3)

along the geodesic, where p = p(λ) is the particle’s 3-momentum with respect to the
local observer defined by the cosmological four-velocity u = ∂/∂t.

How do you interpret (3)? Does it violate momentum conservation in an expanding
universe?

Problem 2

Consider the energy-momentum tensor of a perfect fluid by

T = (ρ+ p/c2)u⊗ u− g−1p (4)

or in components
Tαβ = (ρ+ p/c2)uαuβ − gαβp . (5)

Here g−1 is the inverse metric, u the four-velocity of the fluid, ρ its rest-mass-density,
and p its pressure in its rest frame. The metric is that of a FLRW spacetime:

g = dx0 ⊗ dx0 − a2(x0)ĝ , (6)
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where ĝ is of constant curvature k ∈ {1,−1, 0}. Calculate its covariant divergence
∇ · T (in components ∇αT

αβ) and express it in a an orthonormal basis {e0, e1, e2, e3}
(dual basis {θα}) with respect to g in which e0 = u/c. Recall that for that basis
we explicitly calculated the connection 1-forms Lecture 4. For us here only the re-
sult ωa

0 = (a,0/a)θ
a will be needed, where a,0 = e0(a) = ∂a/∂x0. Alternatively,

you can use the coordinate form using the Christoffel symbols that we calculated in
Lecture 5. (You may convince yourself that the index-free calculation is shorter.)

Prove that the vanishing of the covariant divergence of (4) in the metric (6) is equivalent
to

e0(ρa
3) + (p/c2)e0(a

3) = 0 and ea(p) = 0 . (7)

Note that since e0 = ∂/∂x0 this is equivalent to

(ρa3)· + (p/c2)(a3)· = 0 and p = p(t) . (8)

It is interesting to note that the spatial constancy of ρ is not implied by these conditions.

Problem 3

Consider two metrics g and g̃ on space-time M which are conformally equivalent.
This means that there is a positive function a : M → R+ such that

g = a2g̃ . (9)

Let xα be a local coordinate system with respect to which we express the components
gαβ and g̃αβ and their respective Christoffel symbols. Show that they are related by

Γαβγ = Γ̃αβγ +
!
−g̃αλg̃βγ

a,λ

a
+ δαβ

a,γ

a
+ δαγ

a,β

a

$
(10)

Here we write as usual a,α := ∂a/∂xα, etc.

Let z : R ⊇ I → M be a lightlike geodesic on (M,g). Show that the geodesic equation
for its coordinate representation zα = xα ◦ z, λ &→ zα(λ), is equivalent to

z̈α +
"
Γ̃αβγ ◦ z

#
żβ żβ = −2

(a ◦ z)·
(a ◦ z) ż

α . (11)

Now consider a reparametrisation diffeomorphism

f : R ⊇ I → I ′ ⊆ R (12)

and the corresponding reparametrised curve

y := z ◦ f−1 . (13)

Show that (11) is equivalent to

ÿα +
"
Γ̃αβγ ◦ y

#
ẏβ ẏβ = ẏα

%
ḧ

ḣ
− 2

(a ◦ y)·
(a ◦ y)

&
, (14)

where h := f−1.
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Problem 4

Use the results of Problem 2 to prove the following theorem: The curve z is a lightlike
geodesic for (M,g) if and only if the reparametrised curve y = z ◦ f−1 is a lightlike
geodesic for (M, g̃) where the reparametrisation map f : I ∋ λ &→ λ̃ := f(λ) ∈ Ĩ

and its inverse h := f−1 : Ĩ ∋ λ̃ &→ λ := h(λ̃) ∈ I satisfie any of the two equivalent
conditions (show the equivlence):

f̈

ḟ
= −2

(a ◦ z)·
(a ◦ z) ⇐⇒ ḧ

ḣ
= 2

(a ◦ y)·
(a ◦ y) . (15)

which in turn are are equivalent to

λ̃ = f(λ) = C

∫λ

λ0

dλ ′

a2(z(λ ′))
⇐⇒ λ = h(λ̃) = C̃

∫ λ̃

λ̃0

dλ̃ ′ a2(y(λ̃ ′)) . (16)

Problem 5

We now apply the foregoing “warped-product” metrics of FLRW form

g = dx0 ⊗ dx0 − a2(x0)ĝab dx
a ⊗ dxb , (17)

where ĝ is independent of x0 and not necessarily of constant curvature (hence this class
is more general than FLRW).

We write this in the form (9) with

g̃ = dη⊗ dη− ĝ , (18)

where the coordinate η is defined in terms of the coordinate x0 by

η(x0) =

∫x0

c

dx ′0

a(x ′0)
(19)

and is called the conformal time.

Show that the geodesics of g̃ are given by λ̃ &→ (η(λ̃),!x(λ̃)), where η(λ̃) = aλ̃ + b

and !x(λ̃) is a geodesic of ĝ. Hence for a ∕= 0 we conclude that along such a geodesic η
grows proportional to the affine parameter, i.e. is itself an affine parameter. Moreover,
if the geodesic is lightlike this parameter is affinely equivalent to the proper length in
(M̂, ĝ) (compare Lecture 5).

Use this and the second equation in (16) to derive the following expression for the
value of the affine parameter λ along a lightlike geodesic λ &→ (x0(λ),!x(λ)) at the
instant it hits the constant-time hypersurface x0:

λ(x0) = C

∫x0

k

dx ′0a(x ′0) . (20)
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