Exercises for the lecture on Special Topics in GR & Relativistic Cosmology by DOMENICO GIULINI

Sheet 3

Problem 1

Consider the FLRW metric in coordinates (compare Lecture 4, equations (4.30-31))

$$g = cdt \otimes cdt - a^{2}(t) \Big(d\chi \otimes d\chi + \Sigma^{2}(\chi) \big(d\theta \otimes d\theta + \sin^{2}(\theta) d\phi \otimes d\phi \big) \Big), \quad (1)$$

where

$$\Sigma(\chi) = \begin{cases} \sin(\chi) & \text{for } k = 1 \\ \chi & \text{for } k = 0 \\ \sinh(\chi) & \text{for } k = -1 . \end{cases}$$
(2)

We are interested in the timelike geodesics.

Write down the Euler-Lagrange equation for the energy functional.

Prove that "radial" initial conditions with vanishing $\dot{\theta}$ and $\dot{\phi}$ lead to constant values (equal to the initial ones) for (θ, ϕ) ; that is, the motion stays radial.

Argue why this solves the most general geodesic motion, even though the initial conditions seem special.

Prove that

$$pa = const., \qquad (3)$$

along the geodesic, where $p = p(\lambda)$ is the particle's 3-momentum with respect to the local observer defined by the cosmological four-velocity $u = \partial/\partial t$.

How do you interpret (3)? Does it violate momentum conservation in an expanding universe?

Problem 2

Consider the energy-momentum tensor of a perfect fluid by

$$T = (\rho + p/c^2)u \otimes u - g^{-1}p \tag{4}$$

or in components

$$T^{\alpha\beta} = (\rho + p/c^2)u^{\alpha}u^{\beta} - g^{\alpha\beta}p.$$
 (5)

Here g^{-1} is the inverse metric, u the four-velocity of the fluid, ρ its rest-mass-density, and p its pressure in its rest frame. The metric is that of a FLRW spacetime:

$$g = dx^0 \otimes dx^0 - a^2(x^0)\hat{g}, \qquad (6)$$

where \hat{g} is of constant curvature $k \in \{1, -1, 0\}$. Calculate its covariant divergence $\nabla \cdot T$ (in components $\nabla_{\alpha} T^{\alpha\beta}$) and express it in a an orthonormal basis $\{e_0, e_1, e_2, e_3\}$ (dual basis $\{\theta^{\alpha}\}$) with respect to g in which $e_0 = u/c$. Recall that for that basis we explicitly calculated the connection 1-forms Lecture 4. For us here only the result $\omega^{\alpha}_{0} = (\alpha_{,0}/\alpha)\theta^{\alpha}$ will be needed, where $\alpha_{,0} = e_0(\alpha) = \partial \alpha/\partial x^0$. Alternatively, you can use the coordinate form using the Christoffel symbols that we calculated in Lecture 5. (You may convince yourself that the index-free calculation is shorter.)

Prove that the vanishing of the covariant divergence of (4) in the metric (6) is equivalent to

$$e_0(\rho a^3) + (p/c^2)e_0(a^3) = 0$$
 and $e_a(p) = 0$. (7)

Note that since $e_0 = \partial/\partial x^0$ this is equivalent to

$$(\rho a^3)^{\cdot} + (p/c^2)(a^3)^{\cdot} = 0 \text{ and } p = p(t).$$
 (8)

It is interesting to note that the spatial constancy of ρ is *not* implied by these conditions.

Problem 3

Consider two metrics g and \tilde{g} on space-time M which are conformally equivalent. This means that there is a positive function $a: M \to \mathbb{R}_+$ such that

$$g = a^2 \tilde{g} \,. \tag{9}$$

Let x^{α} be a local coordinate system with respect to which we express the components $g_{\alpha\beta}$ and $\tilde{g}_{\alpha\beta}$ and their respective Christoffel symbols. Show that they are related by

$$\Gamma^{\alpha}_{\beta\gamma} = \tilde{\Gamma}^{\alpha}_{\beta\gamma} + \left(-\tilde{g}^{\alpha\lambda}\tilde{g}_{\beta\gamma}\frac{a_{,\lambda}}{a} + \delta^{\alpha}_{\beta}\frac{a_{,\gamma}}{a} + \delta^{\alpha}_{\gamma}\frac{a_{,\beta}}{a} \right)$$
(10)

Here we write as usual $a_{,\alpha} := \partial a / \partial x^{\alpha}$, etc.

Let $z : \mathbb{R} \supseteq I \to M$ be a lightlike geodesic on (M, g). Show that the geodesic equation for its coordinate representation $z^{\alpha} = x^{\alpha} \circ z$, $\lambda \mapsto z^{\alpha}(\lambda)$, is equivalent to

$$\ddot{z}^{\alpha} + \left(\tilde{\Gamma}^{\alpha}_{\beta\gamma} \circ z\right) \dot{z}^{\beta} \, \dot{z}^{\beta} = -2 \frac{(\mathfrak{a} \circ z)^{\cdot}}{(\mathfrak{a} \circ z)} \dot{z}^{\alpha} \,. \tag{11}$$

Now consider a reparametrisation diffeomorphism

$$f: \mathbb{R} \supseteq I \to I' \subseteq \mathbb{R}$$
⁽¹²⁾

and the corresponding reparametrised curve

$$\mathbf{y} := \mathbf{z} \circ \mathbf{f}^{-1} \,. \tag{13}$$

Show that (11) is equivalent to

$$\ddot{\mathbf{y}}^{\alpha} + \left(\tilde{\Gamma}^{\alpha}_{\beta\gamma} \circ \mathbf{y}\right) \dot{\mathbf{y}}^{\beta} \, \dot{\mathbf{y}}^{\beta} = \dot{\mathbf{y}}^{\alpha} \left[\frac{\dot{\mathbf{h}}}{\dot{\mathbf{h}}} - 2\frac{(\mathbf{a} \circ \mathbf{y})}{(\mathbf{a} \circ \mathbf{y})}\right],\tag{14}$$

where $h := f^{-1}$.

Problem 4

Use the results of Problem 2 to prove the following theorem: The curve z is a lightlike geodesic for (M, g) if and only if the reparametrised curve $y = z \circ f^{-1}$ is a lightlike geodesic for (M, \tilde{g}) where the reparametrisation map $f : I \ni \lambda \mapsto \tilde{\lambda} := f(\lambda) \in \tilde{I}$ and its inverse $h := f^{-1} : \tilde{I} \ni \tilde{\lambda} \mapsto \lambda := h(\tilde{\lambda}) \in I$ satisfie any of the two equivalent conditions (show the equivlence):

$$\frac{\ddot{f}}{\dot{f}} = -2\frac{(a \circ z)}{(a \circ z)} \qquad \Longleftrightarrow \qquad \frac{\ddot{h}}{\dot{h}} = 2\frac{(a \circ y)}{(a \circ y)}.$$
(15)

which in turn are are equivalent to

$$\tilde{\lambda} = f(\lambda) = C \int_{\lambda_0}^{\lambda} \frac{d\lambda'}{a^2(z(\lambda'))} \qquad \Longleftrightarrow \qquad \lambda = h(\tilde{\lambda}) = \tilde{C} \int_{\tilde{\lambda}_0}^{\tilde{\lambda}} d\tilde{\lambda}' a^2(y(\tilde{\lambda}')) .$$
(16)

Problem 5

We now apply the foregoing "warped-product" metrics of FLRW form

$$g = dx^0 \otimes dx^0 - a^2(x^0)\hat{g}_{ab} dx^a \otimes dx^b, \qquad (17)$$

where \hat{g} is independent of x^0 and not necessarily of constant curvature (hence this class is more general than FLRW).

We write this in the form (9) with

$$\tilde{g} = d\eta \otimes d\eta - \hat{g}, \qquad (18)$$

where the coordinate η is defined in terms of the coordinate x^0 by

$$\eta(x^{0}) = \int_{c}^{x^{0}} \frac{dx'^{0}}{a(x'^{0})}$$
(19)

and is called the conformal time.

Show that the geodesics of \tilde{g} are given by $\tilde{\lambda} \mapsto (\eta(\tilde{\lambda}), \vec{x}(\tilde{\lambda}))$, where $\eta(\tilde{\lambda}) = a\tilde{\lambda} + b$ and $\vec{x}(\tilde{\lambda})$ is a geodesic of \hat{g} . Hence for $a \neq 0$ we conclude that along such a geodesic η grows proportional to the affine parameter, i.e. is itself an affine parameter. Moreover, if the geodesic is lightlike this parameter is affinely equivalent to the proper length in (\hat{M}, \hat{g}) (compare Lecture 5).

Use this and the second equation in (16) to derive the following expression for the value of the affine parameter λ along a lightlike geodesic $\lambda \mapsto (x^0(\lambda), \vec{x}(\lambda))$ at the instant it hits the constant-time hypersurface x^0 :

$$\lambda(x^{0}) = C \int_{k}^{x^{0}} dx'^{0} a(x'^{0}) .$$
 (20)