Exercises for the lecture on
 Special Topics in GR \& Relativistic Cosmology

by Domenico Giulini

Sheet 4

Problem 1

In Lecture 7 we discussed that for $\Omega_{\mathrm{rad}}=\Omega_{\Lambda}=0$ the relation between luminositydistance d_{L} and redshift z can be expressed in closed form via Mattig's equation

$$
\begin{equation*}
\mathrm{d}_{\mathrm{L}}(z)=\frac{2 \mathrm{c}}{\mathrm{H}_{0}} \cdot \frac{(\Omega-2)[\sqrt{1+z \Omega}-1]+z \Omega}{\Omega^{2}} . \tag{1}
\end{equation*}
$$

We proved this relation for the "closed" case $k=1$. Show that this formula also holds in the other cases $k=0$ (flat) and $k=-1$ ("open").

Problem 2

Prove that equation (1) is equivalent to

$$
\begin{equation*}
\mathrm{d}_{\mathrm{L}}(z)=\frac{\mathrm{c}}{\mathrm{H}_{0}} \cdot z \cdot \frac{1+\sqrt{1+z \Omega}+z}{1+\sqrt{1+z \Omega}+z \Omega / 2} \tag{2}
\end{equation*}
$$

in which numerator and denominator stay finite for $\Omega \rightarrow 0$.

Problem 3

An object of linear extension D perpendicular to the line of sight is seen from a distance much larger than D under an angle

$$
\begin{equation*}
\Delta \varphi(\mathrm{D}, z)=\frac{\mathrm{D}}{\mathrm{~d}_{\mathrm{A}}(z)} \tag{3}
\end{equation*}
$$

where $d_{A}(z)=d_{L}(z) /(1+z)^{2}$ is the angular distance. Specialise to the case $\Omega_{\text {rad }}=$ $\Omega_{\Lambda}=0$, in which Mattig's formula applies, and show that the function $z \mapsto \varphi(D, z)$ (which we only consider for positive z) is $\propto z^{-1}$ for small Z and $\propto z^{+1}$ for large z. Hence the the function must have a minimum at some finite z-value z_{*}. Determine z_{*} for the flat case $k=0$.

Relate this to the "Scheinriese" Herrn Tur Tur whom Jim Knopf und Lukas der Lokomotivfüherer encounter in the desert Ende der Welt (if you happen to know that story).

Problem 4

Typical current values for the cosmological Ω-parameters are given by

$$
\begin{align*}
\Omega_{\text {dust }} & =0.27 \\
\Omega_{\text {rad }} & =8.25 \times 10^{-5} \tag{4}\\
\Omega_{\Lambda} & =0.73 \\
\Omega_{\mathrm{k}} & =\text { compatible with } 0 .
\end{align*}
$$

Calculate the redshift at which the "radiation" (relativistic matter) contribution equals that of "dust". What would then be their ratio to the Λ-contribution? How does that redshift compare to that of "recombination", which is approximately $z_{\mathrm{rc}}=1100$? What lessons can we draw from that as regards neglecting Ω_{rad} ?

Problem 5

In Lecture 6 we wrote the showed how to write the Friedmann equation in the dimensionless form

$$
\begin{equation*}
(d x / d \lambda)^{2}+V(x)=E \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
x=\mathrm{a} / \mathrm{H}_{0}, \quad \lambda=\mathrm{tH}_{0}, \quad E=\Omega_{\mathrm{k}} \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}(\mathrm{x})=-\frac{\Omega_{\mathrm{rad}}}{x^{2}}-\frac{\Omega_{\mathrm{dust}}}{x}-\Omega_{\Lambda} x^{2} \tag{7}
\end{equation*}
$$

Find all solutions to (5) for $\Omega_{\text {rad }}=\Omega_{k}=0$ in closed analytic form. Choose the constants of integration in such a way that $x(\lambda=0)=0$.

Hint: You have to distinguish the cases $\Omega_{\Lambda}>0, \Omega_{\Lambda}=0$, and $\Omega_{\Lambda}<0$.
For positive Λ derive a formula for the age of the universe, that is the time $t=t_{0}$ at which $x\left(t_{0}\right)=1$ (corresponding to $a\left(t_{0}\right)=a_{0}$). Express that age as multiple of the Hubble-time $1 / \mathrm{H}_{0}$, where $\mathrm{H}_{0}=: \mathrm{h} \cdot 100 \cdot \mathrm{~km} \cdot \mathrm{~s}^{-1} \cdot \mathrm{Mpc}$. Calculate the age of the universe in years for the Ω values (4) and $h=0.72$. Finally, determine the χ-value and the redshift at which \ddot{x} changes sign. What does that value tell you?

