Exercises for the lecture on

Special Topics in GR \& Relativistic Cosmology

by Domenico Giulini

Sheet 6

Problem 1

We recall the"middle" Friedmann equation from Lecture 6 (formula (6.16b) in the manuscript)

$$
\begin{equation*}
\dot{\mathrm{a}}^{2}(\mathrm{t})=\frac{8 \pi \mathrm{G}}{3} \rho(\mathrm{t}) \mathrm{a}^{2}(\mathrm{t})+\frac{\Lambda \mathrm{c}^{2}}{3} \mathrm{a}^{2}(\mathrm{t})-\mathrm{kc} \mathrm{c}^{2} . \tag{1}
\end{equation*}
$$

Like we did for time $t=t_{0}$, we introduce the following Ω-parameters, now for at any time t so that they become functions of t :

$$
\begin{align*}
& \Omega_{\mathfrak{m}}(\mathrm{t}):=\frac{8 \pi \mathrm{G} \rho(\mathrm{t})}{3 \mathrm{H}^{2}(\mathrm{t})}, \tag{2a}\\
& \Omega_{\Lambda}(\mathrm{t}):=\frac{\Lambda \mathrm{c}^{2}}{3 \mathrm{H}^{2}(\mathrm{t})} \tag{2b}\\
& \Omega_{\mathrm{k}}(\mathrm{t}):=\frac{-\mathrm{kc}^{2}}{\mathrm{H}^{2}(\mathrm{t}) \mathrm{a}^{2}(\mathrm{t})} . \tag{2c}
\end{align*}
$$

Equation (1) than merely says that the sum of these equals 1 . We also have $\rho=\rho_{\mathrm{rad}}+$ $\rho_{\text {dust }}$, with $\rho_{\text {rad }} a^{4}=$ const. and $\rho_{\text {dust }} a^{3}=$ const..

Derive the following formulae relating the Ω parameter at time t, when the scale-factor is $a(t)$, to those that time t_{0}, when the scale-factor is $a\left(t_{0}\right)$. In what follows we write Ω for $\Omega(t), \Omega^{0}$ for $\Omega\left(t_{0}\right)$, a for $a(t)$, and a_{0} for $a\left(t_{0}\right)$.

$$
\begin{align*}
& \Omega_{\mathrm{rad}}=\frac{\Omega_{\mathrm{rad}}^{0}}{\Omega_{\mathrm{rad}}^{0}+\Omega_{\mathrm{dust}}^{0} \cdot\left(\mathrm{a} / \mathrm{a}_{0}\right)+\Omega_{\mathrm{k}}^{0} \cdot\left(\mathrm{a} / \mathrm{a}_{0}\right)^{2}+\Omega_{\Lambda}^{0} \cdot\left(\mathrm{a} / \mathrm{a}_{0}\right)^{4}}, \tag{3a}\\
& \Omega_{\text {dust }}=\frac{\Omega_{\text {dust }}^{0}}{\Omega_{\text {rad }}^{0} \cdot\left(a_{0} / a\right)+\Omega_{\text {dust }}^{0}+\Omega_{k}^{0} \cdot\left(a / a_{0}\right)+\Omega_{\Lambda}^{0} \cdot\left(a / a_{0}\right)^{3}}, \tag{3b}\\
& \Omega_{\mathrm{k}}=\frac{\Omega_{k}^{0}}{\Omega_{\text {rad }}^{0} \cdot\left(a_{0} / a\right)^{2}+\Omega_{\text {dust }}^{0} \cdot\left(a_{0} / a\right)+\Omega_{k}^{0}+\Omega_{\Lambda}^{0} \cdot\left(a / a_{0}\right)^{2}}, \tag{3c}\\
& \Omega_{\Lambda}=\frac{\Omega_{\Lambda}^{0}}{\Omega_{\text {rad }}^{0} \cdot\left(a_{0} / a\right)^{4}+\Omega_{\text {dust }}^{0} \cdot\left(a_{0} / a\right)^{3}+\Omega_{k}^{0} \cdot\left(a_{0} / a\right)^{2}+\Omega_{\Lambda}^{0}} . \tag{3d}
\end{align*}
$$

Problem 2

In Lecture 10 we mentioned the Plack-Mass and Planck-Langth. Together with the Planck-Time and Planck-Temperature, they form what is known as the "Planck-Units"

$$
\begin{align*}
\mathrm{m}_{\mathrm{p}} & :=\sqrt{\frac{\hbar \mathrm{c}}{\mathrm{G}}}=2.176 \times 10^{-8} \mathrm{~kg}=1.221 \times 10^{19} \mathrm{GeV} / \mathrm{c}^{2} \tag{4a}\\
\ell_{p} & :=\sqrt{\frac{\hbar \mathrm{G}}{\mathrm{c}^{3}}}=1.616 \times 10^{-35} \mathrm{~m} \tag{4b}\\
\mathrm{t}_{\mathrm{p}} & :=\sqrt{\frac{\hbar \mathrm{G}}{\mathrm{c}^{5}}}=5.391 \times 10^{-44} \mathrm{~s} \tag{4c}\\
\mathrm{~T}_{\mathrm{p}} & :=\sqrt{\frac{\hbar \mathrm{c}^{5}}{\mathrm{Gk}_{\mathrm{B}}^{2}}}=1.4168 \times 10^{32} \mathrm{~K} \tag{4d}
\end{align*}
$$

Note that with a Hubble-Radius

$$
\begin{equation*}
\mathrm{R}_{\mathrm{H}}:=\mathrm{c} / \mathrm{H}_{0}=13.7 \times 10^{9} \mathrm{ly}=1.3 \times 10^{26} \mathrm{~m} \tag{5}
\end{equation*}
$$

the geometric mean between the Hubble radius and the Planck-Length is $4.5 \times 10^{-5} \mathrm{~m}$, which is close to the average size of a human cell. Hence there are as many orders of magnitude between the size of the visible universe (Hubble-Radius) and the human cell as there are between the size of the cell and the Planck-Length.
Suppose the universe evolved from the Big-Bang at $t=0$ to t_{p} according to our equations - clearly an outrageous hypothesis; but we make it anyway. Using equations (3), show that one may safely set $\Omega_{\mathrm{rad}}=1$ and forget about all other $\Omega \mathrm{s}$ in oder to describe the evolution during that period.

Use the Friedmann equation (1) to deduce that

$$
\begin{equation*}
\left(\frac{a_{p}}{a_{0}}\right)^{2}=2 \cdot \sqrt{\Omega_{\mathrm{rad}}^{0}} \cdot H_{0} \cdot t_{p}=2 \cdot \sqrt{\Omega_{\mathrm{rad}}^{0}} \cdot \frac{\ell_{p}}{R_{H}} \tag{6}
\end{equation*}
$$

Use this and (3c) to further derive:

$$
\begin{equation*}
\frac{\Omega_{k}\left(t_{p}\right)}{\Omega_{k}\left(t_{0}\right)}=\frac{2}{\sqrt{\Omega_{\mathrm{rad}}^{0}}} \cdot \frac{\ell_{\mathrm{p}}}{\mathrm{R}_{\mathrm{H}}} . \tag{7}
\end{equation*}
$$

On Problem-Sheet 4, Problem 4, we saw that $\Omega_{\text {rad }}^{0}=8.25 \times 10^{-5} \approx 10^{-4}$. Hence (7) tells us that if $\Omega_{k}(t)$ is close to zero at $t=t_{0}$ (now) to some accuracy $\varepsilon \ll 1$, it must have been close to zero at the Planck-Time with an accuracy of 10^{-59}. This is, in more quantitative detail, the "flatness-problem" that we already mentioned in Lecture 10. Discuss: Why, precisely, is that considered to be a problem?

Problem 3

Suppose an exponential expansion

$$
\begin{equation*}
a(t)=a_{0} \cdot \exp \left(H\left(t-t_{0}\right)\right) \tag{8}
\end{equation*}
$$

How does Ω_{k}, defined in (2c), depend on t under that evolution? If (8) holds for $t<t_{p}$, how many e-folds are needed in order to suppress a generic initial Ω_{k} of order one by the needed factor of roughly 10^{-60} derived in the previous problem? (An " e-fold" is the time needed to increase an exponentially growing quantity by a factor of e.)

