Ergänzungen zur Vorlesung
Kanonische Formulierung der ART
von Domenico Giulini
\section*{Hodge-Duality}

1 Exterior product and algebra

Let V be a real n-dimensional vector space, V^{*} its dual space and $T^{p} V^{*}=$ $V^{*} \otimes \cdots \otimes V^{*}$ its p-fold tensor product. We will follow standard tradition to define forms, i.e. the antisymmetric tensor product on the dual vector space V^{*} rather than on V. Clearly, all constructions that are to follow could likewise be made in terms of V rather than V^{*}.
$T^{p} V^{*}$ carries a representation π_{p} of S_{p}, the symmetric group (permutation group) of p objects, given by

$$
\begin{equation*}
\pi_{P}: S_{p} \rightarrow \operatorname{End}\left(T^{p} V^{*}\right), \quad \pi_{p}(\sigma)\left(\alpha_{1} \otimes \cdots \otimes \alpha_{p}\right):=\alpha_{\sigma(1)} \otimes \cdots \otimes \alpha_{\sigma(p)} \tag{1}
\end{equation*}
$$

and linear extension to sums of tensor products. On $T^{p} V^{*}$ we define the linear operator of antisymmetrisation by

$$
\begin{equation*}
\operatorname{Alt}_{p}:=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sign}(\sigma) \pi_{\mathrm{p}}, \tag{2}
\end{equation*}
$$

where sign : $S_{p} \rightarrow\{1,-1\} \cong \mathbb{Z}_{2}$ is the sign-homomorphism. This linear operator is idempotent (i.e. a projection operator) and its image of $T^{p} V^{*}$ under Alt_{p} is the subspace of totally antisymmetric tensor-products. We write

$$
\begin{equation*}
\pi_{p}\left(T^{p} V^{*}\right)=: \bigwedge^{p} V^{*} . \tag{3}
\end{equation*}
$$

Clearly

$$
\operatorname{dim}\left(\bigwedge^{p} V^{*}\right)= \begin{cases}\binom{n}{p} & \text { for } p \leq n, \tag{4}\\ 0 & \text { for } p>n .\end{cases}
$$

We set

$$
\begin{equation*}
\bigwedge V^{*}:=\bigoplus_{p=0}^{n} \bigwedge^{p} V^{*} . \tag{5}
\end{equation*}
$$

Let $\alpha \in \Lambda^{p} V^{*}$ and $\beta \in \Lambda^{q} V^{*}$, then we define their antisymmetric tensor product

$$
\begin{equation*}
\alpha \wedge \beta:=\frac{(p+q)!}{p \cdot q!} \operatorname{Alt}_{p+q}(\alpha \otimes \beta) \in \bigwedge^{p+q} V^{*} . \tag{6}
\end{equation*}
$$

One easily sees that

$$
\begin{equation*}
\alpha \wedge \beta=(-1)^{p q} \beta \wedge \alpha . \tag{7}
\end{equation*}
$$

Bilinear extension of \wedge to all of $\wedge V^{*}$ endows it with the structure of a real 2^{n}-dimensional associative algebra, the so-called exterior algebra over V^{*}. If $\alpha_{1}, \cdots, \alpha_{p}$ are in V^{*}, we have

$$
\begin{equation*}
\alpha_{1} \wedge \cdots \wedge \alpha_{p}=\sum_{\sigma \in S_{p}} \operatorname{sign}(\sigma) \alpha_{\sigma(1)} \otimes \cdots \otimes \alpha_{\sigma(p)}, \tag{8}
\end{equation*}
$$

as one easily shows from (6) and (7) using induction.
If $\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is a basis of V^{*}, a basis of $\bigwedge^{p} V^{*}$ is given by the following $\binom{n}{p}$ vectors

$$
\begin{equation*}
\left\{\theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}} \mid 1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq n\right\} . \tag{9}
\end{equation*}
$$

An expansion of $\alpha \in \bigwedge^{p} V^{*}$ in this basis is written as follows

$$
\begin{equation*}
\alpha=: \frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}, \tag{10}
\end{equation*}
$$

using standard summation convention and where the coefficients $\alpha_{a_{1} \cdots a_{\rho}}$ are totally antisymmetric in all indices. On the level of coefficients, (6) reads

$$
\begin{equation*}
(\alpha \wedge \beta)_{a_{1} \cdots a_{p+q}}=\frac{(p+q)!}{p!q!} \alpha_{\left[a_{1} \cdots a_{p}\right.} \beta_{\left.a_{p+1} \cdots a_{p+q}\right]}, \tag{11}
\end{equation*}
$$

where square brackets denote total antisymmetrisation in all indices enclosed:

$$
\begin{equation*}
\alpha_{\left[a_{1} \cdots a_{p}\right]}:=\frac{1}{p!} \sum_{\sigma \in S_{p}} \operatorname{sign}(\sigma) \alpha_{a_{\sigma(1)} \cdots a_{\sigma(p)}} . \tag{12}
\end{equation*}
$$

2 Inner products

Every non-degenerate bilinear form $\eta: V \times V \rightarrow \mathbb{R}$ on a vector space V defines an isomorphism $\eta_{\downarrow}: V \rightarrow V^{*}$ to its dual space V^{*} via the requirement $\eta_{\downarrow}(v)(w):=\eta(v, w)$ for all $v, w \in V$; in short, $v \mapsto \eta_{\downarrow}(v):=\eta(v, \cdot)$. Its inverse map is $\eta_{\uparrow}: V^{*} \rightarrow V, \eta_{\uparrow}:=\left(\eta_{\downarrow}\right)^{-1}$, which in turn defines a non-degenerate bilinear form on the dual space, $\eta^{-1}: V^{*} \times V^{*} \rightarrow \mathbb{R}$, via the requirement $\eta^{-1}(\alpha, \beta):=\alpha\left(\eta_{\uparrow}(\beta)\right)$ for all $\alpha, \beta \in V^{*}$. On component-level this reads as follows: Let $\left\{e_{a} \mid 1 \leq a \leq n\right\}$ be a basis of V and $\left\{\theta^{a} \mid 1 \leq a \leq n\right\}$ its dual basis of V^{*}, so that $\theta^{a}\left(e_{b}\right)=\delta_{b}^{a}$. Then, writing $v=v^{a} e_{a}$, we get $\eta_{\downarrow}(v)=v_{b} \theta^{b}$ with

$$
\begin{equation*}
v_{b}:=v^{a} \eta_{a b} \tag{13}
\end{equation*}
$$

and $\eta_{a b}:=\eta\left(e_{a}, e_{b}\right)$. Similarly, writing $\alpha=\alpha_{a} \theta^{a}$, we get $\eta_{\uparrow}(\alpha)=\alpha^{a} e_{a}$ with

$$
\begin{equation*}
\alpha^{a}:=\eta^{a b} \alpha_{b} \tag{14}
\end{equation*}
$$

and $\eta^{a b}:=\eta^{-1}\left(\theta^{a}, \theta^{b}\right)$. Note that in (13) it is the first index on $\eta_{a b}$ that is contracted with v_{a} whereas in (14) it is the second index on $\eta^{a b}$ that is contracted with α_{b}. This is important for consistency in case η is not symmetric.
The previous equations imply

$$
\begin{equation*}
\eta^{a c} \eta_{b c}=\eta^{c a} \eta_{c b}=\delta_{b}^{a} \tag{15}
\end{equation*}
$$

and

$$
\begin{align*}
\eta^{a b} & =\eta^{a c} \eta^{b d} \eta_{c d} \tag{16a}\\
\eta_{a b} & =\eta^{c d} \eta_{c a} \eta_{d b} . \tag{16b}
\end{align*}
$$

This explains why η_{\uparrow} and η_{\downarrow} are called the operations of "index-raising" and "index lowering". Sometimes the images of η_{\uparrow} and η_{\downarrow} are indicated by the musical symbols \sharp (sharp) and b (flat) respectively, i.e., one writes $\eta_{\uparrow}(\alpha)=\alpha^{\sharp}$ and $\eta_{\downarrow}(v)=v^{b}$, which makes sense as long as the bilinear form η with respect to which these maps are defined is self understood. We shall also employ this notation.

We stress once more that up to this point we did not assume η to be symmetric, so that all formulae apply generally. In particular, they will apply to antisymmetric η which occur in spinor calculus. However, for the rest of these supplementary notes we will assume η to be symmetric.
The symmetric inner products on V and V^{*} naturally extend to symmetric inner product on tensor-product spaces, just by taking products slotwise. In particular, we have on $T^{p} V^{*}$

$$
\begin{equation*}
\left\langle\alpha_{1} \otimes \cdots \otimes \alpha_{p}, \beta_{1} \otimes \cdots \otimes \beta_{p}\right\rangle:=\prod_{a=1}^{p} \eta^{-1}\left(\alpha_{a}, \beta_{a}\right) \tag{17}
\end{equation*}
$$

and bilinear extension:

$$
\begin{equation*}
\left\langle\alpha_{a_{1} \cdots a_{p}} \theta^{a_{1}} \otimes \cdots \otimes \theta^{a_{p}}, \beta_{b_{1} \cdots b_{p}} \theta^{b_{1}} \otimes \cdots \otimes \theta^{b_{p}}\right\rangle=\alpha_{a_{1} \cdots a_{p}} \beta^{a_{1} \cdots a_{p}} . \tag{18}
\end{equation*}
$$

On each subspace $\bigwedge^{p} V^{*} \subset T^{p} V *$ we have

$$
\begin{equation*}
\left\langle\alpha_{1} \wedge \cdots \wedge \alpha_{p}, \beta_{1} \wedge \cdots \wedge \beta_{p}\right\rangle:=p!\sum_{\sigma \in S_{p}} \operatorname{sign}(\sigma) \prod_{a=1}^{p} \eta\left(\alpha_{a}, \beta_{\sigma(a)}\right) \tag{19}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\left\langle\frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}, \frac{1}{p!} \beta_{b_{1} \cdots b_{p}} \theta^{b_{1}} \wedge \cdots \wedge \theta^{b_{p}}\right\rangle=\alpha_{a_{1} \cdots a_{p}} \beta^{a_{1} \cdots a_{p}} . \tag{20}
\end{equation*}
$$

In the totally antisymmetric case it is sometimes more convenient to renormalise this product in a p-dependent fashion. One sets

$$
\begin{equation*}
\left.\langle\cdot, \cdot\rangle_{\text {norm }}\right|_{\bigwedge^{p} V^{*}}:=\left.\frac{1}{p!}\langle\cdot, \cdot\rangle\right|_{\bigwedge^{p} V^{*}} \tag{21}
\end{equation*}
$$

so that

$$
\begin{equation*}
\left\langle\frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}, \frac{1}{p!} \beta_{b_{1} \cdots b_{p}} \theta^{b_{1}} \wedge \cdots \wedge \theta^{b_{p}}\right\rangle_{\text {norm }}=\frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \beta^{a_{1} \cdots a_{p}} \tag{22}
\end{equation*}
$$

3 Hodge duality

Given a choice o of an orientation of V^{*} (e.g. induced by an orientation of V), there is a unique top-form $\varepsilon \in \bigwedge^{n} V^{*}$ (i.e. a volume form for V), associated with the triple $\left(V^{*}, \eta^{-1}, o\right)$, given by

$$
\begin{equation*}
\varepsilon:=\theta^{1} \wedge \cdots \wedge \theta^{n} \tag{23}
\end{equation*}
$$

where $\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ is any η^{-1}-orthonormal Basis of V^{*} in the orientation class o. The Hodge duality map at level $0 \leq p \leq n$ is a linear isomorphism

$$
\begin{equation*}
\star_{p}: \bigwedge^{p} V^{*} \rightarrow \bigwedge^{n-p} V^{*} \tag{24a}
\end{equation*}
$$

defined implicitly by

$$
\begin{equation*}
\alpha \wedge \star_{p} \beta=\varepsilon\langle\alpha, \beta\rangle_{\text {norm }} \tag{24b}
\end{equation*}
$$

This means that the image of $\beta \in \bigwedge^{p} V^{*}$ under \star_{p} in $\Lambda^{n-p} V^{*}$ is defined by the requirement that (24b) holds true for all $\alpha \in \Lambda^{p} V^{*}$. Linearity is immediate and uniqueness of \star_{p} follows from the fact that if $\lambda \in \bigwedge^{n-p} V^{*}$ and $\alpha \wedge \lambda=0$ for all $\alpha \in \bigwedge^{p} V^{*}$, then $\lambda=0$. To show existence it is sufficient to define \star_{p} on basis vectors. Since (24b) is also linear in α it is sufficient to verify (24b) if α runs through all basis vectors.

From now on we shall follow standard practice and drop the subscript p on \star, supposing that this will not cause confusion.

Let $\left\{e_{1}, \cdots e_{n}\right\}$ be a basis of V and $\left\{\theta^{1}, \cdots, \theta^{n}\right\}$ its dual basis of V^{*}; i.e. $\theta^{a}\left(e_{b}\right)=\delta_{b}^{a}$. Let further $\left\{\theta_{1}, \cdots, \theta_{n}\right\}$ be the basis of V^{*} given by the image of $\left\{e_{1}, \cdots e_{n}\right\}$ under η_{\downarrow}, i.e. $\theta_{a}=\eta_{a b} \theta^{b}$. Then, on the basis $\left\{\theta_{a_{1}} \wedge \cdots \wedge \theta_{a_{p}} \mid\right.$ $\left.1 \leq a_{1}<a_{2}<\cdots<a_{p} \leq n\right\}$ of $\bigwedge^{p} V^{*}$ the map \star has the simple form

$$
\begin{equation*}
\star\left(\theta_{b_{1}} \wedge \cdots \wedge \theta_{b_{p}}\right)=\frac{1}{(n-p)!} \varepsilon_{b_{1} \cdots b_{p} a_{p+1} \cdots a_{n}} \theta^{a_{p+1}} \wedge \cdots \wedge \theta^{a_{n}} \tag{25}
\end{equation*}
$$

This is proven by merely checking (24b) for $\alpha=\theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}$ and $\beta=$ $\theta_{b_{1}} \wedge \cdots \wedge \theta_{b_{p}}$. Instead of (25) we can write

$$
\begin{align*}
\star\left(\theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}\right) & =\frac{1}{(n-p)!} \eta^{a_{1} b_{1}} \cdots \eta^{a_{p} b_{p}} \varepsilon_{b_{1} \cdots b_{p} b_{p+1} \cdots b_{n}} \theta^{b_{p+1}} \wedge \cdots \wedge \theta^{b_{n}} \\
& =\frac{1}{(n-p)!} \varepsilon^{a_{1} \cdots a_{p}}{ }_{a_{p+1} \cdots a_{n}} \theta^{a_{p+1}} \wedge \cdots \wedge \theta^{a_{n}} \tag{26}
\end{align*}
$$

which makes explicit the dependence on ε and η.
If $\alpha=\frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}$, then $\star \alpha=\frac{1}{(n-p)!}(\star \alpha)_{b_{1} \cdots b_{n-p}} \theta^{b_{1}} \wedge \cdots \wedge \theta^{b_{n-p}}$, where

$$
\begin{equation*}
(\star \alpha)_{b_{1} \cdots b_{n-p}}=\frac{1}{p!} \alpha_{a_{1} \cdots a_{p}} \varepsilon_{b_{1} \cdots b_{n-p}}^{a_{1} \cdots a_{p}} . \tag{27}
\end{equation*}
$$

This gives the familiar expression of Hodge duality in component language. Note that on component level the first (rather than last) p indices are contracted.

Applying \star twice (i.e. actually ${ }_{(n-p)} \circ \star_{p}$) leads to the following self-map of $\bigwedge^{p} V^{*}$:

$$
\begin{align*}
\star & \left(\star\left(\theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}\right)\right) \\
& =\frac{1}{p!(n-p)!} \varepsilon^{a_{1} \cdots a_{p}}{ }_{a_{p+1} \cdots a_{n}} \varepsilon^{a_{p+1} \cdots a_{n}}{ }_{b_{1} \cdots b_{p}} \theta^{b_{1}} \wedge \cdots \wedge \theta^{b_{p}} \\
& =\frac{(-1)^{p(n-p)}}{p!(n-p)!} \varepsilon^{a_{1} \cdots a_{p} a_{p+1} \cdots a_{n}} \varepsilon_{b_{1} \cdots b_{p} a_{p+1} \cdots a_{n}} \theta^{b_{1}} \wedge \cdots \wedge \theta^{b_{p}} \tag{28}\\
& =(-1)^{p(n-p)}\langle\varepsilon, \varepsilon\rangle_{\text {norm }} \theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}} .
\end{align*}
$$

Note that

$$
\begin{equation*}
\langle\varepsilon, \varepsilon\rangle_{\text {norm }}=\frac{1}{n!} \eta^{a_{1} b_{1}} \cdots \eta^{a_{n} b_{n}} \varepsilon_{a_{1} \cdots a_{n}} \varepsilon_{b_{1} \cdots b_{n}}=\left(\varepsilon_{12 \cdots n}\right)^{2} / \operatorname{det}\left\{\eta\left(e_{a}, e_{b}\right)\right\} . \tag{29}
\end{equation*}
$$

This formula holds for any volume form ε in the definition (24b), independent of whether or not it is related to η.
Since the right-hand side of (24b) is symmetric under the exchange $\alpha \leftrightarrow \beta$, so must be the left-hand side. Using (28) we get

$$
\begin{align*}
\langle\alpha, \beta\rangle_{\text {norm }} \varepsilon & =\alpha \wedge \star \beta=\beta \wedge \star \alpha=(-1)^{p(n-p)} \star \alpha \wedge \beta \\
& =\langle\varepsilon, \varepsilon\rangle_{\text {norm }}^{-1} \star \alpha \wedge \star \star \beta=\langle\varepsilon, \varepsilon\rangle_{\text {norm }}^{-1}\langle\star \alpha, \star \beta\rangle_{\text {norm }} \varepsilon \tag{30}
\end{align*}
$$

hence

$$
\begin{equation*}
\langle\star \alpha, \star \beta\rangle_{\text {norm }}=\langle\varepsilon, \varepsilon\rangle_{\text {norm }}\langle\alpha, \beta\rangle_{\text {norm }} . \tag{31}
\end{equation*}
$$

From this and (28)) it follows for $\alpha \in \bigwedge^{p} V^{*}$ and $\beta \in \bigwedge^{n-p} V^{*}$, that

$$
\begin{equation*}
\langle\alpha, \star \beta\rangle_{\text {norm }}=\langle\varepsilon, \varepsilon\rangle_{\text {norm }}^{-1}\langle\star \alpha, \star \star \beta\rangle_{\text {norm }}=(-1)^{p(n-p)}\langle\star \alpha, \beta\rangle_{\text {norm }} \tag{32}
\end{equation*}
$$

This shows that the adjoint map of \star relative to $\langle\cdot, \cdot\rangle_{\text {norm }}$ is $(-1)^{p(n-p)} \star$.
Formulae (28), (30)(31), and (32) are valid for general ε in the definition (24b). If we chose ε in the way we did, namely as the unique volume form that assigns unit volume to an oriented orthonormal frame, as does (23), then we have

$$
\begin{equation*}
\langle\varepsilon, \varepsilon\rangle_{\text {norm }}=(-1)^{n_{-}} \tag{33}
\end{equation*}
$$

where n_{-}is the maximal dimension of subspaces in V restricted to which η is negative definite; i.e. η is of signature $\left(n_{+}, n_{-}\right)$. Equation (31) then shows
that \star is an isometry for even n_{-}and an anti-isometry for odd n_{-}(as for Lorentzian η in any dimension).
Finally we note the following useful formula: If $v \in V$ let $i_{v}: T^{p} V^{*} \rightarrow$ $T^{p-1} V^{*}$ the map which inserts v into the first tensor factor. It restricts to a map $i_{v}: \Lambda^{p} V^{*} \rightarrow \Lambda^{p-1} V^{*}$. Then, for any $\alpha \in \Lambda^{p} V^{*}$, we have

$$
\begin{equation*}
i_{v} \star \alpha=\star\left(\alpha \wedge v^{b}\right) . \tag{34}
\end{equation*}
$$

where $v^{b}:=\eta_{\downarrow}(v)$. It suffices to prove this for basis elements $v=e_{a}$ of V and $\alpha=\theta^{a_{1}} \wedge \cdots \wedge \theta^{a_{p}}$ of $\wedge^{p} V^{*}$, which is almost immediate using (26).

