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Hodge-Duality

1 Exterior product and algebra

Let V be a real n-dimensional vector space, V ∗ its dual space and T pV ∗ =
V ∗⊗ · · ·⊗V ∗ its p-fold tensor product. We will follow standard tradition to
define forms, i.e. the antisymmetric tensor product on the dual vector space
V ∗ rather than on V . Clearly, all constructions that are to follow could
likewise be made in terms of V rather than V ∗.

T pV ∗ carries a representation πp of Sp, the symmetric group (permutation
group) of p objects, given by

πP : Sp → End(T pV ∗), πp(σ)
(
α1 ⊗ · · · ⊗ αp

)
:= ασ(1) ⊗ · · · ⊗ ασ(p) (1)

and linear extension to sums of tensor products. On T pV ∗ we define the
linear operator of antisymmetrisation by

Altp := 1
p!
∑
σ∈Sp

sign(σ)πp , (2)

where sign : Sp → {1,−1} ∼= Z2 is the sign-homomorphism. This linear
operator is idempotent (i.e. a projection operator) and its image of T pV ∗
under Altp is the subspace of totally antisymmetric tensor-products. We
write

πp
(
T pV ∗

)
=:

p∧
V ∗ . (3)

Clearly

dim
( p∧

V ∗
)

=
{(n

p

)
for p ≤ n ,

0 for p > n .
(4)

We set ∧
V ∗ :=

n⊕
p=0

p∧
V ∗ . (5)

Let α ∈
∧p V ∗ and β ∈

∧q V ∗, then we define their antisymmetric tensor
product

α ∧ β := (p+q)!
p!q! Altp+q(α⊗ β) ∈

p+q∧
V ∗ . (6)
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One easily sees that
α ∧ β = (−1)pq β ∧ α . (7)

Bilinear extension of ∧ to all of
∧
V ∗ endows it with the structure of a real

2n-dimensional associative algebra, the so-called exterior algebra over V ∗. If
α1, · · · , αp are in V ∗, we have

α1 ∧ · · · ∧ αp =
∑
σ∈Sp

sign(σ)ασ(1) ⊗ · · · ⊗ ασ(p) , (8)

as one easily shows from (6) and (7) using induction.

If {θ1, · · · , θn} is a basis of V ∗, a basis of
∧p V ∗ is given by the following(n

p

)
vectors

{θa1 ∧ · · · ∧ θap | 1 ≤ a1 < a2 < · · · < ap ≤ n} . (9)

An expansion of α ∈
∧p V ∗ in this basis is written as follows

α =: 1
p! αa1···ap θ

a1 ∧ · · · ∧ θap , (10)

using standard summation convention and where the coefficients αa1···ap are
totally antisymmetric in all indices. On the level of coefficients, (6) reads

(α ∧ β)a1···ap+q = (p+q)!
p!q! α[a1···apβap+1···ap+q ] , (11)

where square brackets denote total antisymmetrisation in all indices enclo-
sed:

α[a1···ap] := 1
p!
∑
σ∈Sp

sign(σ) αaσ(1)···aσ(p) . (12)

2 Inner products

Every non-degenerate bilinear form η : V × V → R on a vector space V
defines an isomorphism η↓ : V → V ∗ to its dual space V ∗ via the requirement
η↓(v)(w) := η(v, w) for all v, w ∈ V ; in short, v 7→ η↓(v) := η(v, ·). Its inverse
map is η↑ : V ∗ → V , η↑ :=

(
η↓
)−1, which in turn defines a non-degenerate

bilinear form on the dual space, η−1 : V ∗ × V ∗ → R, via the requirement
η−1(α, β) := α

(
η↑(β)

)
for all α, β ∈ V ∗. On component-level this reads as

follows: Let {ea | 1 ≤ a ≤ n} be a basis of V and {θa | 1 ≤ a ≤ n} its dual
basis of V ∗, so that θa(eb) = δab . Then, writing v = vaea, we get η↓(v) = vbθ

b

with
vb := vaηab (13)

and ηab := η(ea, eb). Similarly, writing α = αaθ
a, we get η↑(α) = αaea with

αa := ηabαb (14)
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and ηab := η−1(θa, θb). Note that in (13) it is the first index on ηab that
is contracted with va whereas in (14) it is the second index on ηab that
is contracted with αb. This is important for consistency in case η is not
symmetric.

The previous equations imply

ηacηbc = ηcaηcb = δab (15)

and

ηab = ηacηbdηcd (16a)
ηab = ηcdηcaηdb. (16b)

This explains why η↑ and η↓ are called the operations of “index-raising” and
“index lowering”. Sometimes the images of η↑ and η↓ are indicated by the
musical symbols ] (sharp) and [ (flat) respectively, i.e., one writes η↑(α) = α]

and η↓(v) = v[, which makes sense as long as the bilinear form η with respect
to which these maps are defined is self understood. We shall also employ this
notation.

We stress once more that up to this point we did not assume η to be sym-
metric, so that all formulae apply generally. In particular, they will apply
to antisymmetric η which occur in spinor calculus. However, for the rest of
these supplementary notes we will assume η to be symmetric.

The symmetric inner products on V and V ∗ naturally extend to symmetric
inner product on tensor-product spaces, just by taking products slotwise. In
particular, we have on T pV ∗

〈
α1 ⊗ · · · ⊗ αp, β1 ⊗ · · · ⊗ βp

〉
:=

p∏
a=1

η−1(αa, βa) (17)

and bilinear extension:〈
αa1···ap θ

a1 ⊗ · · · ⊗ θap , βb1···bp θ
b1 ⊗ · · · ⊗ θbp

〉
= αa1···apβ

a1···ap . (18)

On each subspace
∧p V ∗ ⊂ T pV ∗ we have

〈
α1 ∧ · · · ∧ αp , β1 ∧ · · · ∧ βp

〉
:= p!

∑
σ∈Sp

sign(σ)
p∏
a=1

η(αa, βσ(a)) (19)

and hence〈
1
p!αa1···apθ

a1 ∧ · · · ∧ θap , 1
p!βb1···bpθ

b1 ∧ · · · ∧ θbp
〉

= αa1···apβ
a1···ap . (20)
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In the totally antisymmetric case it is sometimes more convenient to renor-
malise this product in a p-dependent fashion. One sets〈

· , ·
〉

norm
∣∣∧p

V ∗
:= 1

p!
〈
· , ·
〉∣∣∧p

V ∗
(21)

so that〈
1
p!αa1···apθ

a1∧· · ·∧θap , 1
p!βb1···bpθ

b1∧· · ·∧θbp
〉

norm
= 1

p!αa1···apβ
a1···ap . (22)

3 Hodge duality

Given a choice o of an orientation of V ∗ (e.g. induced by an orientation
of V ), there is a unique top-form ε ∈

∧n V ∗ (i.e. a volume form for V ),
associated with the triple (V ∗, η−1, o), given by

ε := θ1 ∧ · · · ∧ θn , (23)

where {θ1, · · · , θn} is any η−1-orthonormal Basis of V ∗ in the orientation
class o. The Hodge duality map at level 0 ≤ p ≤ n is a linear isomorphism

?p :
p∧
V ∗ →

n−p∧
V ∗ , (24a)

defined implicitly by
α ∧ ?pβ = ε 〈α , β〉norm . (24b)

This means that the image of β ∈
∧p V ∗ under ?p in

∧n−p V ∗ is defined
by the requirement that (24b) holds true for all α ∈

∧p V ∗. Linearity is
immediate and uniqueness of ?p follows from the fact that if λ ∈

∧n−p V ∗
and α∧λ = 0 for all α ∈

∧p V ∗, then λ = 0. To show existence it is sufficient
to define ?p on basis vectors. Since (24b) is also linear in α it is sufficient to
verify (24b) if α runs through all basis vectors.

From now on we shall follow standard practice and drop the subscript p on
?, supposing that this will not cause confusion.

Let {e1, · · · en} be a basis of V and {θ1, · · · , θn} its dual basis of V ∗; i.e.
θa(eb) = δab . Let further {θ1, · · · , θn} be the basis of V ∗ given by the image
of {e1, · · · en} under η↓, i.e. θa = ηabθ

b. Then, on the basis {θa1 ∧ · · · ∧ θap |
1 ≤ a1 < a2 < · · · < ap ≤ n} of

∧p V ∗ the map ? has the simple form

?(θb1 ∧ · · · ∧ θbp) = 1
(n−p)!εb1···bp ap+1···an θ

ap+1 ∧ · · · ∧ θan . (25)

This is proven by merely checking (24b) for α = θa1 ∧ · · · ∧ θap and β =
θb1 ∧ · · · ∧ θbp . Instead of (25) we can write

?(θa1 ∧ · · · ∧ θap) = 1
(n−p)! η

a1b1 · · · ηapbp εb1···bpbp+1···bn θ
bp+1 ∧ · · · ∧ θbn

= 1
(n−p)! ε

a1···ap
ap+1···an θ

ap+1 ∧ · · · ∧ θan , (26)
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which makes explicit the dependence on ε and η.

If α = 1
p!αa1···apθ

a1 ∧ · · · ∧ θap , then ?α = 1
(n−p)!(?α)b1···bn−pθ

b1 ∧ · · · ∧ θbn−p ,
where

(?α)b1···bn−p = 1
p! αa1···apε

a1···ap
b1···bn−p . (27)

This gives the familiar expression of Hodge duality in component langua-
ge. Note that on component level the first (rather than last) p indices are
contracted.

Applying ? twice (i.e. actually ?(n−p) ◦ ?p) leads to the following self-map of∧p V ∗:
?
(
? (θa1 ∧ · · · ∧ θap)

)
= 1

p!(n−p)!ε
a1···ap

ap+1···anε
ap+1···an

b1···bp θ
b1 ∧ · · · ∧ θbp

= (−1)p(n−p)

p!(n−p)! εa1···apap+1···anεb1···bpap+1···an θ
b1 ∧ · · · ∧ θbp

= (−1)p(n−p) 〈ε, ε〉norm θa1 ∧ · · · ∧ θap .

(28)

Note that

〈ε, ε〉norm = 1
n!η

a1b1 · · · ηanbnεa1···anεb1···bn = (ε12···n)2/ det{η(ea, eb)} . (29)

This formula holds for any volume form ε in the definition (24b), indepen-
dent of whether or not it is related to η.

Since the right-hand side of (24b) is symmetric under the exchange α↔ β,
so must be the left-hand side. Using (28) we get

〈α, β〉norm ε = α ∧ ?β = β ∧ ?α = (−1)p(n−p) ? α ∧ β
= 〈ε, ε〉−1

norm ? α ∧ ? ? β = 〈ε, ε〉−1
norm 〈?α , ?β〉norm ε ,

(30)

hence
〈?α , ?β〉norm = 〈ε, ε〉norm〈α, β〉norm . (31)

From this and (28)) it follows for α ∈
∧p V ∗ and β ∈ ∧n−p V ∗, that

〈α, ?β〉norm = 〈ε, ε〉−1
norm〈?α , ? ? β〉norm = (−1)p(n−p) 〈?α, β〉norm . (32)

This shows that the adjoint map of ? relative to 〈· , ·〉norm is (−1)p(n−p) ?.

Formulae (28), (30)(31), and (32) are valid for general ε in the definition
(24b). If we chose ε in the way we did, namely as the unique volume form
that assigns unit volume to an oriented orthonormal frame, as does (23),
then we have

〈ε, ε〉norm = (−1)n− (33)

where n− is the maximal dimension of subspaces in V restricted to which η
is negative definite; i.e. η is of signature (n+, n−). Equation (31) then shows
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that ? is an isometry for even n− and an anti-isometry for odd n− (as for
Lorentzian η in any dimension).

Finally we note the following useful formula: If v ∈ V let iv : T pV ∗ →
T p−1V ∗ the map which inserts v into the first tensor factor. It restricts to a
map iv :

∧p V ∗ → ∧p−1 V ∗. Then, for any α ∈
∧p V ∗, we have

iv ? α = ?(α ∧ v[) . (34)

where v[ := η↓(v). It suffices to prove this for basis elements v = ea of V
and α = θa1 ∧ · · · ∧ θap of

∧p V ∗, which is almost immediate using (26).
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