Übungen zur Vorlesung

Kanonische Formulierung der ART

von Domenico Giulini

Blatt 10

Aufgabe 1

Betrachten Sie die Quantenmechanik eines Punktteilchen im Raum \mathbb{R}^n , der jedoch eine allgemeine Riemann'sche Metrik g_{ab} trage. x^a und p_a $(a=1,\cdots,n)$ seien die Standardkoordinaten auf $T^*\mathbb{R}^n$. Der Hilbertraum ist $\mathcal{H}=L^2(\mathbb{R}^n,d\mu)$ mit dem Maß $d\mu(x)=\sqrt{g(x)}\,d^nx$, wobei $g=\det\{g_{ab}\}$. Die Hamiltonfunktion des freien Teilchen ist gegeben durch $H(q,p)=\frac{1}{2m}g^{ab}(x)p_ap_b$.

Zeigen Sie: Die Operatoren

$$\hat{x}^a := x^a, \qquad \hat{p}_a := -i\hbar g^{-1/4} \,\partial_a \,g^{1/4}$$
 (1)

(Achtung: Im Impulsoperator wirkt die Ableitung ∂_a auf alles rechts von ihr stehende, also nicht nur auf $g^{1/4}$.) sind symmetrisch (formal selbstadjungiert) und erfüllen die kanonischen Vertauschungsrelationen

$$[\hat{x}^a, \hat{x}^b] = [\hat{p}_a, \hat{p}_b] = 0, \quad [\hat{x}^a, \hat{p}_b] = i\hbar \,\delta^a_b.$$
 (2)

Zeigen Sie weiter, dass folgender Hamiltonoperator

$$\hat{H} := \frac{1}{2m} g^{-1/4} \hat{p}_a g^{ab} g^{1/2} \hat{p}_b g^{-1/4} + \lambda \, \hbar^2 R \tag{3}$$

ebenfalls symmetrisch ist. (Tipp: Zeigen Sie, dass der erste Term gleich ist $\frac{1}{2m}\Delta_g$, wobei $\Delta_g:=g^{ab}\nabla_a\nabla_b$ der Laplace-Operator für die Levi-Civita kovariante Ableitung ∇ zur gegebenen Metrik ist.) Hier ist R der Ricci-Skalar der Metrik g_{ab} und λ eine Konstante. Argumentieren Sie, dass dieser Hamiltonoperator im Limes $\hbar \to 0$ in die klassische Hamiltonfunktion übergeht. Welchen Effekt hat der Krümmungsterm?

Aufgabe 2

Sei (Σ, g) eine zusammenhängende Riemann'sche Mannigfaltigkeit und $p \in \Sigma$. Wir definieren

$$D_F(\Sigma) := \{ \phi \in Diff(\Sigma) : \phi(p) = p, \quad \phi_{*p} = id_{T_p\Sigma} \}. \tag{4}$$

Zeigen Sie: Ist $\phi \in D_F(\Sigma)$ eine Isometrie bezüglich g, also gilt $\phi^*g = g$, dann ist ϕ die Identität. (Tipp: Benutzen Sie folgende Eigenschaft der Exponentialabbildung $\exp_q: T_q\Sigma \supseteq U \to \Sigma$: Ist ϕ Isometrie und $\phi(q) = q$, dann gilt $\phi \circ \exp_q = \exp_q \circ \phi_{*q}$. Zeigen Sie damit, dass die Fixpunktmenge einer Isometrie $\phi \in D_F(\Sigma)$ offen und abgeschlossen in Σ ist.) Folgern Sie daraus, dass die Wirkung von $D_F(\Sigma)$ auf Riem (Σ) (welche?) frei ist.