Exercises for the lecture on

Theory of Fundamental Interactions (summer 2022)

by DOMENICO GIULINI

Sheet 1

Problem 1

Consider the Lie-algebra $L = (\mathbb{R}^3, \times)$ and its adjoint representation:

$$\mathbf{L} \to \operatorname{End}(\mathbb{R}^3), \quad \vec{\mathbf{x}} \mapsto \operatorname{ad}_{\vec{\mathbf{x}}} : \vec{\mathbf{y}} \mapsto \operatorname{ad}_{\vec{\mathbf{x}}}(\vec{\mathbf{y}}) = \vec{\mathbf{x}} \times \vec{\mathbf{y}}.$$
(1)

Let exp denote the exponential map which is defined by its power-series expansion in $End(\mathbb{R}^3)$. Show that its image lies in $GL(\mathbb{R}^3) \subset End(\mathbb{R}^3)$. (Hint: You have to show that $det(exp(T)) \neq 0$ for all $T \in End(\mathbb{R}^3)$.)

Show by evaluating the exponential series that for $\vec{n} \in \mathbb{R}^3$ with $\|\vec{n}\| = 1$ and $\theta \in \mathbb{R}$

$$\exp(\theta \operatorname{ad}_{\vec{n}}) = \mathsf{P}_{\parallel} + \left(\cos(\theta) \operatorname{id}_{\mathbb{R}^3} + \sin(\theta) \operatorname{ad}_{\vec{n}}\right) \circ \mathsf{P}_{\perp}, \qquad (2)$$

where $P_{\parallel}: \vec{x} \mapsto \vec{n}(\vec{n} \cdot \vec{x})$ and $P_{\perp}: \vec{x} \mapsto \vec{x} - \vec{n}(\vec{n} \cdot \vec{x})$ are the projection maps parallel and perpendicular to \vec{n} . (Hint: Show first that $ad_{\vec{n}} \circ ad_{\vec{n}} = -P_{\perp}$ and decompose the exponential series in even and odd powers.)

Argue that $\exp(\theta \operatorname{ad}_{\vec{n}})$ is a rotation in \mathbb{R}^3 (with standard euclidean inner product) by an angle θ and oriented axis \vec{n} .

Problem 2

Let $L := (V, [\cdot, \cdot])$ be a Lie-algebra and $ad : L \to End(V)$ given by $X \mapsto ad_X$ with $ad_X(Y) := [X, Y]$. Show that this is a homomorphism of Lie-algebras:

$$ad_{[X,Y]} = [ad_X, ad_Y].$$
(3)

Note that in the lecture we had already shown that ad_X is a derivation, i.e. $ad_X([Y, Z]) = [ad_X(Y), Z] + [Y, ad_X(Z)].$

Problem 3

Let $L := (V, [\cdot, \cdot])$ be a Lie-algebra and $K : V \times V \to \mathbb{K}$ its Killing-form K(X, Y) :=Trace($ad_X \circ ad_Y$). Show that

$$K([X,Y],Z) + K(Y,[X,Z]) = 0.$$
 (4)

Hint: Use (3) and the cyclic property of the trace.

Problem 4

Consider again the Lie-algebra $L = (\mathbb{R}^3, \times)$. Let $\{e_a \mid a = 1, 2, 3\}$ be an orthonormal basis with respect to the standard euclidean inner product. Compute the components $K_{ab} = K(e_a, e_b)$ of the Killing-form for that basis.

Problem 5

Let $L' = (V', [\cdot, \cdot]')$ and $L'' = (V'', [\cdot, \cdot]'')$ be two Lie-algebras and $\sigma : L'' \to Der(L')$ a Lie-homomorphism. In the lecture we defined the *semi-direct sum of* L' with L'' by $L = (V, [\cdot, \cdot])$ with $V := V' \oplus V''$ and $[X' \oplus X'', Y' \oplus Y''] := ([X', Y']' + \sigma_{X''}(Y') - \sigma_{Y''}(X')) \oplus [X'', Y'']''$. Verify that the Lie-product so defined on V satisfies the Jacobiidentity.

Problem 6

Show that the set of real traceless (2×2) -matrices form a real Lie-algebra of the Lie-product is defined by the commutator. We call ist $\mathfrak{sl}(2,\mathbb{R})$.

Show that

$$X^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad X^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \tag{5}$$

is a basis of $\mathfrak{sl}(2,\mathbb{R})$ with

$$[X^+, X^-] = H, \quad [H, X^{\pm}] = \pm 2 X^{\pm}.$$
 (6)

Show that $\mathfrak{sl}(2,\mathbb{R})$ is simple.

Hint: Let $I \subseteq \mathfrak{sl}(2, \mathbb{R})$ be an ideal and $C = x_+X^+ + x_-X^- + hH \in I$. Use (6) and proceed as follows: If, e.g., $x_- \neq 0$ then it follows from considering $[X^+, [X^+, C]]$ that $X^+ \in I$, which implies $I = \mathfrak{sl}(2, \mathbb{R})$ (why?). Now, the same conclusion can be drawn if $x_+ \neq 0$ or if $h \neq 0$.

Problem 7

Sei $L = (V, [\cdot, \cdot])$ ve a real Lie-algebra of dimension dim $(L) := \dim(V) = n$. We consider the complex numbers \mathbb{C} as real vector space of dimension 2. An obvious basis of \mathbb{C} over \mathbb{R} is $\{1, i\}$. We define a new *real* Lie-algebra $L' = (V', [\cdot, \cdot]')$ of dimension 2n through

$$\mathsf{V}' := \mathbb{C} \otimes_{\mathbb{R}} \mathsf{V} \tag{7a}$$

mit Lie-Produkt

$$[z_1 \otimes X_1, z_2 \otimes X_2]' := z_1 z_2 \otimes [X_1, X_2]$$

$$(7b)$$

on elements of the form $z \otimes X$ and bilinear extension on all of L'. (Convince yourself that this makes L' indeed into a Lie-algebra.)

If $\{e_a \mid a = 1, \dots, n\}$ is a Basis of V then a basis $\{e'_A \mid A = 1, \dots, 2n\}$ of V' is given by

$$e'_{a} \coloneqq 1 \otimes e_{a}, \quad e'_{n+a} \coloneqq i \otimes e_{a}, \quad (a = 1, \cdots, n).$$
 (8)

Show that $(a, b, c = 1, \dots, n)$:

$$[e'_{a}, e'_{b}]' = C^{c}_{ab} e'_{c}, \qquad (9a)$$

$$[e'_{a}, e'_{n+b}]' = C^{c}_{ab} e'_{n+c}, \qquad (9b)$$

$$[e'_{n+a}, e'_{n+b}]' = -C^c_{ab} e'_c.$$
(9c)

Show further that if $K_{ab} = C_{an}^m C_{bm}^n$ are the $(n \times n)$ components of the Killing-form K of L, then the $(2n \times 2n)$ components of the Killing-form K' of L' are given by

$$K'(e'_{a}, e'_{b}) = 2K_{ab},$$
 (10a)

$$K'(e'_{a}, e'_{n+b}) = 0,$$
 (10b)

$$K'(e'_{n+a}, e'_{n+b}) = -2K_{ab}.$$
 (10c)

What can be deduced from that regarding the preservation of semi-simplicity and compactness of a Lie-algebra under this process of \mathbb{C} -extension? (A Lie-algebra is called compact, iff the Killing-form is negative definite.)

Problem 8

We consider once more the process of \mathbb{C} -extension of a real Lie-algebra L into another real Lie-algebra L' of twice the dimension, as explained in the previous exercise. We wish to show by way of example that two non-isomorphic Lie-algebras L₁ and L₂ may have isomorphic \mathbb{C} -extensions L'₁ and L'₂. Show that this is indeed the case for the two 3-dimensional Lie-algebras L_{1,2} = Span{ e_1, e_2, e_3 } with

$$[e_1, e_2] = e_3$$
 $[e_2, e_3] = e_1$ $[e_3, e_1] = e_2$, (11a)

$$[e_1, e_2] = e_3$$
 $[e_2, e_3] = e_1$ $[e_3, e_1] = -e_2$. (11b)

Note that (11a) is just the Lie-algebra of Problem 1, denoted by $\mathfrak{so}(3, \mathbb{R})$, whereas (11b) corresponds to the Lie-algebra of Problem 6, i.e. $\mathfrak{sl}(2, \mathbb{R})$, as one sees by a change of basis $e_1 = \frac{1}{2}(X^+ + X^-)$, $e_2 = \frac{1}{2}(X^- - X^+)$ and $e_2 = \frac{1}{2}H$ in (6). These two algebras are not isomorphic, as one sees by, e.g., looking that their Killing forms (one is negative definite, the other indefinite).

Let for a = 1, 2, 3 the six basis vectors for L'_1 und L'_2 be $e'_a = 1 \otimes e_a$, $e'_{3+a} = i \otimes e_a$, one sees that the basis transformation exchanging e'_1 with e'_4 and e'_3 with e'_6 transforms the relations L'_1 into that of L'_2 .

The terminology is as follows: L is called a *real form* of L' if $L' = \mathbb{C} \otimes_{\mathbb{R}} L$. Hence we see that a given Lie-algebra may possess different (i.e. non-isomorphic) real forms, amongst them compact and non compact ones.

In the literature $\mathbb{C} \otimes_{\mathbb{R}} L$ is often called the "complexification" of L, because this real object possesses an obvious complex structure that may be used to turn it into a complex Lie-algebra. We deliberately do *not* follow this terminology.