Exercises for the lecture on
 Theory of Fundamental Interactions (summer 2022)

by Domenico Giulini

Sheet 1

Problem 1

Consider the Lie-algebra $\mathrm{L}=\left(\mathbb{R}^{3}, \times\right)$ and its adjoint representation:

$$
\begin{equation*}
\mathrm{L} \rightarrow \operatorname{End}\left(\mathbb{R}^{3}\right), \quad \vec{x} \mapsto \operatorname{ad}_{\vec{x}}: \vec{y} \mapsto \operatorname{ad}_{\vec{x}}(\overrightarrow{\mathrm{y}})=\vec{x} \times \vec{y} . \tag{1}
\end{equation*}
$$

Let exp denote the exponential map which is defined by its power-series expansion in $\operatorname{End}\left(\mathbb{R}^{3}\right)$. Show that its image lies in $\operatorname{GL}\left(\mathbb{R}^{3}\right) \subset \operatorname{End}\left(\mathbb{R}^{3}\right)$. (Hint: You have to show that $\operatorname{det}(\exp (T)) \neq 0$ for all $T \in \operatorname{End}\left(\mathbb{R}^{3}\right)$.)
Show by evaluating the exponential series that for $\vec{n} \in \mathbb{R}^{3}$ with $\|\vec{n}\|=1$ and $\theta \in \mathbb{R}$

$$
\begin{equation*}
\exp \left(\theta \mathrm{ad}_{\vec{n}}\right)=\mathrm{P}_{\|}+\left(\cos (\theta) \mathrm{id}_{\mathbb{R}^{3}}+\sin (\theta) \operatorname{ad}_{\vec{n}}\right) \circ \mathrm{P}_{\perp}, \tag{2}
\end{equation*}
$$

where $P_{\|}: \vec{x} \mapsto \vec{n}(\vec{n} \cdot \vec{x})$ and $P_{\perp}: \vec{x} \mapsto \vec{x}-\vec{n}(\vec{n} \cdot \vec{x})$ are the projection maps parallel and perpendicular to \vec{n}. (Hint: Show first that $\mathrm{ad}_{\vec{n}} \circ \operatorname{ad}_{\vec{n}}=-P_{\perp}$ and decompose the exponential series in even and odd powers.)
Argue that $\exp \left(\theta \mathrm{ad}_{\vec{n}}\right)$ is a rotation in \mathbb{R}^{3} (with standard euclidean inner product) by an angle θ and oriented axis \vec{n}.

Problem 2

Let $L:=(V,[\cdot, \cdot])$ be a Lie-algebra and $a d: L \rightarrow \operatorname{End}(V)$ given by $X \mapsto a d_{X}$ with $\operatorname{ad}_{\mathrm{X}}(\mathrm{Y}):=[\mathrm{X}, \mathrm{Y}]$. Show that this is a homomorphism of Lie-algebras:

$$
\begin{equation*}
\operatorname{ad}_{[X, Y]}=\left[\operatorname{ad}_{X}, \operatorname{ad}_{Y}\right] . \tag{3}
\end{equation*}
$$

Note that in the lecture we had already shown that ad_{X} is a derivation, i.e. $\operatorname{ad}_{X}([Y, Z])=\left[\operatorname{ad}_{x}(Y), Z\right]+\left[Y, \operatorname{ad}_{X}(Z)\right]$.

Problem 3

Let $\mathrm{L}:=(\mathrm{V},[\cdot, \cdot])$ be a Lie-algebra and $\mathrm{K}: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{K}$ its Killing-form $\mathrm{K}(\mathrm{X}, \mathrm{Y}):=$ Trace $\left(a d_{X} \circ a d_{Y}\right)$. Show that

$$
\begin{equation*}
\mathrm{K}([\mathrm{X}, \mathrm{Y}], \mathrm{Z})+\mathrm{K}(\mathrm{Y},[\mathrm{X}, \mathrm{Z}])=0 . \tag{4}
\end{equation*}
$$

Hint: Use (3) and the cyclic property of the trace.

Problem 4

Consider again the Lie-algebra $L=\left(\mathbb{R}^{3}, \times\right)$. Let $\left\{e_{a} \mid a=1,2,3\right\}$ be an orthonormal basis with respect to the standard euclidean inner product. Compute the components $\mathrm{K}_{\mathrm{ab}}=\mathrm{K}\left(e_{a}, e_{b}\right)$ of the Killing-form for that basis.

Problem 5

Let $\mathrm{L}^{\prime}=\left(\mathrm{V}^{\prime},[\cdot, \cdot]^{\prime}\right)$ and $\mathrm{L}^{\prime \prime}=\left(\mathrm{V}^{\prime \prime},[\cdot, \cdot]^{\prime \prime}\right)$ be two Lie-algebras and $\sigma: \mathrm{L}^{\prime \prime} \rightarrow \operatorname{Der}\left(\mathrm{L}^{\prime}\right)$ a Lie-homomorphism. In the lecture we defined the semi-direct sum of L^{\prime} with $\mathrm{L}^{\prime \prime}$ by $\mathrm{L}=(\mathrm{V},[\cdot, \cdot])$ with $\mathrm{V}:=\mathrm{V}^{\prime} \oplus \mathrm{V}^{\prime \prime}$ and $\left[\mathrm{X}^{\prime} \oplus \mathrm{X}^{\prime \prime}, \mathrm{Y}^{\prime} \oplus \mathrm{Y}^{\prime \prime}\right]:=\left(\left[\mathrm{X}^{\prime}, \mathrm{Y}^{\prime}\right]^{\prime}+\sigma_{X^{\prime \prime}}\left(\mathrm{Y}^{\prime}\right)-\right.$ $\left.\sigma_{Y^{\prime \prime}}\left(X^{\prime}\right)\right) \oplus\left[X^{\prime \prime}, Y^{\prime \prime}\right]^{\prime \prime}$. Verify that the Lie-product so defined on V satisfies the Jacobiidentity.

Problem 6

Show that the set of real traceless (2×2)-matrices form a real Lie-algebra of the Lie-product is defined by the commutator. We call ist $\mathfrak{s l}(2, \mathbb{R})$.
Show that

$$
X^{+}=\left(\begin{array}{ll}
0 & 1 \tag{5}\\
0 & 0
\end{array}\right), \quad X^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

is a basis of $\mathfrak{s l}(2, \mathbb{R})$ with

$$
\begin{equation*}
\left[\mathrm{X}^{+}, \mathrm{X}^{-}\right]=\mathrm{H}, \quad\left[\mathrm{H}, \mathrm{X}^{ \pm}\right]= \pm 2 \mathrm{X}^{ \pm} . \tag{6}
\end{equation*}
$$

Show that $\mathfrak{s l}(2, \mathbb{R})$ is simple.
Hint: Let $\mathrm{I} \subseteq \mathfrak{s l}(2, \mathbb{R})$ be an ideal and $C=x_{+} \mathrm{X}^{+}+x_{-} \mathrm{X}^{-}+h \mathrm{H} \in \mathrm{I}$. Use (6) and proceed as follows: If, e.g., $X_{-} \neq 0$ then it follows from considering $\left[X^{+},\left[X^{+}, C\right]\right]$ that $\mathrm{X}^{+} \in \mathrm{I}$, which implies $\mathrm{I}=\mathfrak{s l}(2, \mathbb{R})$ (why?). Now, the same conclusion can be drawn if $x_{+} \neq 0$ or if $h \neq 0$.

Problem 7

Sei $L=(\mathrm{V},[\cdot, \cdot])$ ve a real Lie-algebra of dimension $\operatorname{dim}(\mathrm{L}):=\operatorname{dim}(\mathrm{V})=\mathrm{n}$. We consider the complex numbers \mathbb{C} as real vector space of dimension 2 . An obvious basis of \mathbb{C} over \mathbb{R} is $\{1, \mathrm{i}\}$. We define a new real Lie-algebra $\mathrm{L}^{\prime}=\left(\mathrm{V}^{\prime},[\cdot, \cdot]^{\prime}\right)$ of dimension 2 n through

$$
\begin{equation*}
\mathrm{V}^{\prime}:=\mathbb{C} \otimes_{\mathbb{R}} \mathrm{V} \tag{7a}
\end{equation*}
$$

mit Lie-Produkt

$$
\begin{equation*}
\left[z_{1} \otimes X_{1}, z_{2} \otimes X_{2}\right]^{\prime}:=z_{1} z_{2} \otimes\left[X_{1}, X_{2}\right] \tag{7b}
\end{equation*}
$$

on elements of the form $z \otimes X$ and bilinear extension on all of L^{\prime}. (Convince yourself that this makes L' indeed into a Lie-algebra.)

If $\left\{e_{a} \mid a=1, \cdots, n\right\}$ is a Basis of V then a basis $\left\{e_{A}^{\prime} \mid A=1, \cdots, 2 n\right\}$ of V^{\prime} is given by

$$
\begin{equation*}
e_{a}^{\prime}:=1 \otimes e_{a}, \quad e_{n+a}^{\prime}:=\mathfrak{i} \otimes e_{a}, \quad(a=1, \cdots, n) \tag{8}
\end{equation*}
$$

Show that $(a, b, c=1, \cdots, n)$:

$$
\begin{align*}
{\left[e_{a}^{\prime}, e_{b}^{\prime}\right]^{\prime} } & =C_{a b}^{c} e_{c}^{\prime}, \tag{9a}\\
{\left[e_{a}^{\prime}, e_{n+b}^{\prime}\right]^{\prime} } & =C_{a b}^{c} e_{n+c}^{\prime}, \tag{9b}\\
{\left[e_{n+a}^{\prime}, e_{n+b}^{\prime}\right]^{\prime} } & =-C_{a b}^{c} e_{c}^{\prime} . \tag{9c}
\end{align*}
$$

Show further that if $\mathrm{K}_{\mathrm{ab}}=\mathrm{C}_{\mathrm{an}}^{m} \mathrm{C}_{\mathrm{bm}}^{n}$ are the $(\mathrm{n} \times n)$ components of the Killing-form K of L, then the $(2 n \times 2 n)$ components of the Killing-form K^{\prime} of L^{\prime} are given by

$$
\begin{align*}
\mathrm{K}^{\prime}\left(e_{\mathrm{a}}^{\prime}, e_{\mathrm{b}}^{\prime}\right) & =2 \mathrm{~K}_{\mathrm{ab}}, \tag{10a}\\
\mathrm{~K}^{\prime}\left(e_{\mathrm{a}}^{\prime}, e_{\mathrm{n}+\mathrm{b}}^{\prime}\right) & =0, \tag{10b}\\
\mathrm{~K}^{\prime}\left(e_{\mathrm{n}+\mathrm{a}}^{\prime}, e_{\mathrm{n}+\mathrm{b}}^{\prime}\right) & =-2 \mathrm{~K}_{\mathrm{ab}} . \tag{10c}
\end{align*}
$$

What can be deduced from that regarding the preservation of semi-simplicity and compactness of a Lie-algebra under this process of \mathbb{C}-extension? (A Lie-algebra is called compact, iff the Killing-form is negative definite.)

Problem 8

We consider once more the process of \mathbb{C}-extension of a real Lie-algebra L into another real Lie-algebra L^{\prime} of twice the dimension, as explained in the previous exercise. We wish to show by way of example that two non-isomorphic Lie-algebras L_{1} and L_{2} may have isomorphic \mathbb{C}-extensions L_{1}^{\prime} and L_{2}^{\prime}. Show that this is indeed the case for the two 3-dimensional Lie-algebras $L_{1,2}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}\right\}$ with

$$
\begin{array}{lll}
{\left[e_{1}, e_{2}\right]=e_{3}} & {\left[e_{2}, e_{3}\right]=e_{1}} & {\left[e_{3}, e_{1}\right]=e_{2}} \\
{\left[e_{1}, e_{2}\right]=e_{3}} & {\left[e_{2}, e_{3}\right]=e_{1}} & {\left[e_{3}, e_{1}\right]=-e_{2} .} \tag{11b}
\end{array}
$$

Note that (11a) is just the Lie-algebra of Problem 1, denoted by $\mathfrak{s o}(3, \mathbb{R})$, whereas (11b) corresponds to the Lie-algebra of Problem 6, i.e. $\mathfrak{s l}(2, \mathbb{R})$, as one sees by a change of basis $e_{1}=\frac{1}{2}\left(X^{+}+X^{-}\right), e_{2}=\frac{1}{2}\left(X^{-}-X^{+}\right)$and $e_{2}=\frac{1}{2} H$ in (6). These two algebras are not isomorphic, as one sees by, e.g., looking that their Killing forms (one is negative definite, the other indefinite).
Let for $a=1,2,3$ the six basis vectors for L_{1}^{\prime} und L_{2}^{\prime} be $e_{a}^{\prime}=1 \otimes e_{a}, e_{3+a}^{\prime}=\mathfrak{i} \otimes e_{a}$, one sees that the basis transformation exchanging e_{1}^{\prime} with e_{4}^{\prime} and e_{3}^{\prime} with e_{6}^{\prime} transforms the relations L_{1}^{\prime} into that of L_{2}^{\prime}.
The terminology is as follows: L is called a real form of L^{\prime} if $L^{\prime}=\mathbb{C} \otimes_{\mathbb{R}} L$. Hence we see that a given Lie-algebra may possess different (i.e. non-isomorphic) real forms, amongst them compact and non compact ones.
In the literature $\mathbb{C} \otimes_{\mathbb{R}} \mathrm{L}$ is often called the "complexification" of L , because this real object possesses an obvious complex structure that may be used to turn it into a complex Lie-algebra. We deliberately do not follow this terminology.

