Exercises for the Lecture on

Theory of Fundamental Interactions (summer 2022)

by DOMENICO GIULINI

Sheet 2

Problem 1

The Pauli matrices are

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \qquad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \qquad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}. \tag{1}$$

1. Show that

$$\sigma_a \sigma_b = \delta_{ab} \mathsf{E}_2 + \mathfrak{i} \, \varepsilon_{abc} \sigma^c \,, \tag{2}$$

where E_2 denotes the unit (2×2) matrix and where for notational consistency with the summation convention we write $\sigma^c := \delta^{cd} \sigma_d$ instead of σ_c .

- 2. Show that $\text{Span}_{\mathbb{C}}\{E_2, \sigma_1, \sigma_2, \sigma_3\} = \text{End}(\mathbb{C}^2)$.
- 3. Show the following identity that is valid for any $M \in \text{End}(\mathbb{C}^2)$:

$$M = 2 \operatorname{Trace}(M) E_2 - \sigma_a M \sigma^a \,. \tag{3}$$

We will use this identity in our discussion of $SL(2, \mathbb{C})$, the universal cover of the Lorentz-group.

Problem 2

In the lecture we discussed the existence of a decomposition of a semi-simple Liealgebra into the Killing-orthogonal direct sum of simple ideals. Let now L be semisimple and

$$\mathbf{L} = \bigoplus_{a=1}^{N} \mathbf{I}_{n} \tag{4}$$

such a decomposition. Show that it is unique (up to permutation of summands).

Hint: Let $I \subset L$ be a simple ideal; then $[I, L] := \text{Span}\{[X, Y] : X \in I, Y \in L\} \subseteq I$. [I, L] cannot be $\{0\}$ since this would imply that I is in contradiction to the assumption that L is Since [I, L] is itself an ideal which is contained in I we have [I, L] = I. (4) implies $I = [I, L] = \bigoplus_{a} [I, I_{a}]$. Argue that simplicity of I implies that only one summand, say that for a = i, is not equal to $\{0\}$. Hence $I = [I, I_{i}]$, which, again by simplicity, immediately implies $I = I_{i}$.

Problem 3

Let $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$ be the Pauli matrices (1) and $\vec{w} \in \mathbb{C}^3$.

- 1. Show that $\exp(\vec{w} \cdot \vec{\sigma})$ is an element of $SL(2, \mathbb{C})$.
- 2. Expand $\exp(\vec{w} \cdot \vec{\sigma})$ and write the result as linear combination of $\{E_2, \vec{\sigma}\}$ so that all functions that occur have only real arguments.

Problem 4

Let L be a Lie-algebra and $[L, L] := \text{Span}\{[X, Y] : X, Y \in L\}.$

- 1. Prove that $[L, L] \subseteq$ is an ideal.
- 2. Let L be simple (excluding one-dimensional L). Prove that L is perfect, i.e. [L, L] = L.
- 3. Let L be semi-simple. Prove that L is perfect. (Hint: Recall (4))
- 4. Let $L \subset End(V)$ be a semi-simple Lie-algebra and $V \rtimes_{\sigma} L$ its semi-direct sum (compare Problem 5 of Sheet 1) with respect to the standard homomorphism $\sigma : L \to Der(V)$, where $\sigma_X(v) := Xv$ (application of X to v). Under what conditions is $V \rtimes_{\sigma} L$ perfect?

Problem 5

We consider the Lie-algebra $\mathfrak{sl}(2,\mathbb{R})$ of the group $SL(2,\mathbb{R})$ and again choose the basis

$$X^{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad X^{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix},$$
 (5)

with

$$[X^+, X^-] = H, \quad [H, X^{\pm}] = \pm 2 X^{\pm}.$$
 (6)

- 1. Let u(n) denote the Lie-algebra of the group U(n) of all unitary $n \times n$ matrices. u(n) consists of all anti-hermitean $n \times n$ matrices: $X = -X^{\dagger}$.
- 2. Let $T : \mathfrak{sl}(2,\mathbb{R}) \to \mathfrak{u}(n)$ be a homomorphism. Show that $\text{Kernel}(T) = \mathfrak{sl}(2,\mathbb{R})$, i.e. T is trivial.
- Show that this implies that SL(2, ℝ) has no non-trivial finite-dimensional unitary representations. Show further that the corresponding statements also hold for sl(2, ℂ) and SL(2, ℂ).

Hint: We write for abbreviation $T(X) =: \hat{X}$. The anti-unitary matrix \hat{X}^+ satisfies $(\hat{X}^+)^2 = \frac{1}{2}\hat{X}^+ \cdot [\hat{H}, \hat{X}^+]$ (why?). Hence we have $\text{Trace}((\hat{X}^+)^2) = 0$ (why?). From that you may follow $\hat{X}^+ = 0$ (how?). Simplicity of $\mathfrak{sl}(2, \mathbb{R})$ then yields $\text{Kern}(T) = \mathfrak{sl}(2, \mathbb{R})$. Clearly, $\mathfrak{sl}(2, \mathbb{R})$ is a Lie-subalgebra of $\mathfrak{sl}(2, \mathbb{C})$. But the smallest ideal in $\mathfrak{sl}(2, \mathbb{C})$ containing $\mathfrak{sl}(2, \mathbb{R})$ (its "Idealiser") is $\mathfrak{sl}(2, \mathbb{C})$ itself (why?). Hence any Lie-homomorphismus from $\mathfrak{sl}(2, \mathbb{C})$ to $\mathfrak{u}(n)$ is trivial.

Problem 6

Let V be a real vector space with non-degenerate bilinear form $\omega : V \times V \to \mathbb{R}$, which we assume to be either symmetric ($\epsilon = 1$) or antisymmetric ($\epsilon = -1$); hence $\omega(v, w) = \epsilon \omega(w, v)$. We consider the group O(V, ω) of all ω -preserving linear maps (called the generalised orthogonal group of V with respect to ω):

$$O(V,\omega) := \left\{ A \in GL(V) : \omega(Av, Aw) = \omega(v, w) \; \forall v, w \in V \right\}.$$
(7)

1. Show that $Lie(O(V, \omega))$ is given by all ω -antisymmetric endomorphisms

$$\operatorname{Lie}(O(V,\omega)) := \left\{ X \in \operatorname{End}(V) : \omega(Xv,w) = -\omega(v,Xw) \; \forall v,w \in V \right\}.$$
(8)

- 2. Let $\{e_a | a = 1, \dots, n\}$ be a basis of V with respect to which we write for $\omega = V^* \otimes V^*$ and $X \in End(V) \cong V \otimes V^*$ the the components $\omega_{ab} := \omega(e_a, e_b)$ and $X(e_b) = X^a_{\ b}e_a$. Show that $X \in Lie(O(V, \omega)) \Leftrightarrow X_{ab} = -\epsilon X_{ba}$, where $X_{ab} := X^n_{\ b}\omega_{na}$.
- 3. Let $\{\theta^{\alpha} | \alpha = 1, \dots, n\}$ be the basis of V^{*} dual to $\{e_{\alpha} | \alpha = 1, \dots, n\}$ and define $\theta_{\alpha} := \omega_{\alpha n} \theta^{n}$. Show that a basis for Lie $(O(V, \omega))$ is given by the

$$M_{ab} := e_a \otimes \theta_b - \varepsilon e_b \otimes \theta_a \begin{cases} a < b & \text{for } \varepsilon = 1, \\ a \le b & \text{for } \varepsilon = -1. \end{cases}$$
(9)

Note that the number of basis vectors is n(n + 1)/2 for $\varepsilon = 1$ and n(n + 1)/2 for $\varepsilon = -1$.

4. Show that the Lie-products (commutators) of the basis vectors are

$$[M_{ab}, M_{cd}] = \omega_{ad} M_{bc} + \omega_{bc} M_{ad} - \epsilon \omega_{ac} M_{bd} - \epsilon \omega_{bd} M_{ac} .$$
(10)

Note that these cover the Lie-algebras for a large variety of groups, including the proper orthogonal groups and Lorentz groups in all dimensions (for $\epsilon = 1$) and symplectic groups in all dimensions (for $\epsilon = -1$). Note also that the right-hand side could have been written without explicit appearance of ϵ by writing $\epsilon \omega_{ac} = \omega_{ca}$ and $\epsilon \omega_{bd} = \omega_{db}$, but that would have somewhat destroyed the systematics of the index-permutations on the right-hand.

Problem 7

Let $G \subset GL(V)$ be a Lie-group. The corresponding "inhomogeneous group", denoted by IG, is defined to be $IG := V \rtimes_{\alpha} G$, i.e. its semi-direct product with the abelian group (V, +) using the standard homomorphism $\alpha : G \to Aut(V) \equiv GL(V)$, given by $\alpha_A(\alpha) := A\alpha$ (application of A to α). Then $(\alpha, A)(b, B) = (\alpha + Ab, AB)$.

1. Let $s \mapsto (b(s), B(s))$ be a differentiable curve through the identity, i.e. a(0) = 0, A(0) = -V. An overdot denotes the derivative at s = 0. Then

$$\begin{aligned} Ad_{(a,A)}(\dot{b},\dot{B}) &:= \frac{d}{ds} \bigg|_{s=0} (a,A) (b(s), B(s)) (a,A)^{-1} \\ &= (A\dot{b} - A\dot{B}A^{-1}a, A\dot{B}A^{-1}). \end{aligned}$$
(11)

2. Let now also $t\mapsto \big(\mathfrak{a}(t),B(t)\big)$ be a differentiable curve through the identity. Then

$$ad_{(\dot{a},\dot{A})}(\dot{b},\dot{B}) \coloneqq \frac{d}{dt} \bigg|_{t=0} Ad_{(a(t),A(t))}(\dot{b},\dot{B}) = (\dot{A}\dot{b} - \dot{B}\dot{a}, [\dot{A},\dot{B}]).$$
(12)

Problem 8

In this exercise we assume G = GL(V). Then $Lie(G) = End(V) \cong V \otimes V^*$ and $Lie(IG) = V \oplus (V \otimes V^*)$ as vector space. We also want to consider the dual vector space to Lie(IG), which we call $[Lie(IG)]^*$. If $\{e_a \mid a = 1, \dots, n\}$ and $\{\theta^a \mid a = 1, \dots, n\}$ are dual bases of V and V* respectively, we write $(y, Y) \in Lie(IG)$ as $y = y^a e_a \in V$ and $Y = Y^a_{\ b} e_a \otimes \theta^b \in End(V)$. Likewise, we write $(\sigma, \Sigma) \in Lie(IG)$ as $\sigma = \sigma_a \theta^a$ and $\Sigma = \Sigma_a{}^b \theta^a \otimes e_b$. The action of (y, Y) under (σ, Σ) is then given by $(\sigma, \Sigma)[(y, Y)] = \sigma_a y^a + \Sigma_a{}^b Y^a_b$

From (11) we read off the *adjoint representation* Ad of the group IG on its own Liealgebra Lie(IG): If $(a, A) \in IG$ and $(x, X) \in Lie(IG)$ this is

$$Ad_{(\mathfrak{a},A)}(\mathbf{x},\mathbf{X}) = \left(A\mathbf{x} - Ad_A(\mathbf{X})\mathbf{a}, Ad_A(\mathbf{X})\right), \tag{13}$$

As always, given a representation of a group on a vector space, the dual space carries the corresponding dual representation, given by the inverse-transposed:

$$\mathrm{Ad}^*_{(\mathfrak{a},A)}(\sigma,\Sigma) := (\sigma,\Sigma) \circ \mathrm{Ad}_{(\mathfrak{a},A)^{-1}}.$$
 (14)

It is called the *co-adjoint representation* of IG.

1. Show that

$$Ad^*_{(\mathfrak{a},A)}(\sigma,\Sigma) := \left(A^*\sigma, (A^*\otimes A)\Sigma + A^*\sigma\otimes \mathfrak{a}\right), \tag{15}$$

where A^* is the dual (inverse transposed) action of A on V^* .

2. How does the corresponding formula read if G is a proper subgroup of GL(V), e.g., as in the previous Problem, the subgroup leaving the bilinear form ω invariant?