Exercises for the Lecture on
 Theory of Fundamental Interactions (summer 2022)

by Domenico Giulini

Sheet 2

Problem 1

The Pauli matrices are

$$
\sigma_{1}=\left(\begin{array}{ll}
0 & 1 \tag{1}\\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -\mathfrak{i} \\
\mathfrak{i} & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

1. Show that

$$
\begin{equation*}
\sigma_{\mathrm{a}} \sigma_{\mathrm{b}}=\delta_{\mathrm{ab}} \mathrm{E}_{2}+\mathfrak{i} \varepsilon_{\mathrm{abc}} \sigma^{\mathrm{c}} \tag{2}
\end{equation*}
$$

where E_{2} denotes the unit (2×2) matrix and where for notational consistency with the summation convention we write $\sigma^{c}:=\delta^{c d} \sigma_{d}$ instead of σ_{c}.
2. Show that $\operatorname{Span}_{\mathbb{C}}\left\{\mathrm{E}_{2}, \sigma_{1}, \sigma_{2}, \sigma_{3}\right\}=\operatorname{End}\left(\mathbb{C}^{2}\right)$.
3. Show the following identity that is valid for any $M \in \operatorname{End}\left(\mathbb{C}^{2}\right)$:

$$
\begin{equation*}
M=2 \operatorname{Trace}(M) E_{2}-\sigma_{a} M \sigma^{a} . \tag{3}
\end{equation*}
$$

We will use this identity in our discussion of $\operatorname{SL}(2, \mathbb{C})$, the universal cover of the Lorentz-group.

Problem 2

In the lecture we discussed the existence of a decomposition of a semi-simple Liealgebra into the Killing-orthogonal direct sum of simple ideals. Let now L be semisimple and

$$
\begin{equation*}
\mathrm{L}=\bigoplus_{\mathrm{a}=1}^{\mathrm{N}} \mathrm{I}_{\mathrm{n}} \tag{4}
\end{equation*}
$$

such a decomposition. Show that it is unique (up to permutation of summands).
Hint: Let $\mathrm{I} \subset \mathrm{L}$ be a simple ideal; then $[\mathrm{I}, \mathrm{L}]:=\operatorname{Span}\{[\mathrm{X}, \mathrm{Y}]: \mathrm{X} \in \mathrm{I}, \mathrm{Y} \in \mathrm{L}\} \subseteq$ I. [I, L] cannot be $\{0\}$ since this would imply that I is in contradiction to the assumption that L is Since [I, L] is itself an ideal which is contained in I we have $[\mathrm{I}, \mathrm{L}]=\mathrm{I}$. (4) implies $\mathrm{I}=[\mathrm{I}, \mathrm{L}]=\oplus_{\mathrm{a}}\left[\mathrm{I}, \mathrm{I}_{\mathrm{a}}\right]$. Argue that simplicity of I implies that only one summand, say that for $a=i$, is not equal to $\{0\}$. Hence $I=\left[I, I_{i}\right]$, which, again by simplicity, immediately implies $I=I_{i}$.

Problem 3

Let $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$ be the Pauli matrices (1) and $\vec{w} \in \mathbb{C}^{3}$.

1. Show that $\exp (\vec{w} \cdot \vec{\sigma})$ is an element of $\operatorname{SL}(2, \mathbb{C})$.
2. Expand $\exp (\vec{w} \cdot \vec{\sigma})$ and write the result as linear combination of $\left\{E_{2}, \vec{\sigma}\right\}$ so that all functions that occur have only real arguments.

Problem 4

Let L be a Lie-algebra and $[L, L]:=\operatorname{Span}\{[X, Y]: X, Y \in L\}$.

1. Prove that $[\mathrm{L}, \mathrm{L}] \subseteq$ is an ideal.
2. Let L be simple (excluding one-dimensional L). Prove that L is perfect, i.e. $[\mathrm{L}, \mathrm{L}]=\mathrm{L}$.
3. Let L be semi-simple. Prove that L is perfect. (Hint: Recall (4))
4. Let $L \subset \operatorname{End}(V)$ be a semi-simple Lie-algebra and $V \rtimes_{\sigma} L$ its semi-direct sum (compare Problem 5 of Sheet 1) with respect to the standard homomorphism $\sigma: \mathrm{L} \rightarrow \operatorname{Der}(\mathrm{V})$, where $\sigma_{X}(v):=\mathrm{X} v$ (application of X to v). Under what conditions is $V \rtimes_{\sigma} \mathrm{L}$ perfect?

Problem 5

We consider the Lie-algebra $\mathfrak{s l}(2, \mathbb{R})$ of the group $\operatorname{SL}(2, \mathbb{R})$ and again choose the basis

$$
X^{+}=\left(\begin{array}{ll}
0 & 1 \tag{5}\\
0 & 0
\end{array}\right), \quad X^{-}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),
$$

with

$$
\begin{equation*}
\left[\mathrm{X}^{+}, \mathrm{X}^{-}\right]=\mathrm{H}, \quad\left[\mathrm{H}, \mathrm{X}^{ \pm}\right]= \pm 2 \mathrm{X}^{ \pm} . \tag{6}
\end{equation*}
$$

1. Let $\mathfrak{u}(n)$ denote the Lie-algebra of the group $U(n)$ of all unitary $\mathfrak{n} \times \mathfrak{n}$ matrices. $\mathfrak{u}(n)$ consists of all anti-hermitean $\mathfrak{n} \times n$ matrices: $X=-X^{\dagger}$.
2. Let $T: \mathfrak{s l}(2, \mathbb{R}) \rightarrow \mathfrak{u}(\mathfrak{n})$ be a homomorphism. Show that $\operatorname{Kernel}(T)=\mathfrak{s l}(2, \mathbb{R})$, i.e. T is trivial.
3. Show that this implies that $\operatorname{SL}(2, \mathbb{R})$ has no non-trivial finite-dimensional unitary representations. Show further that the corresponding statements also hold for $\mathfrak{s l}(2, \mathbb{C})$ and $\operatorname{SL}(2, \mathbb{C})$.
Hint: We write for abbreviation $T(X)=: \widehat{X}$. The anti-unitary matrix \widehat{X}^{+}satisfies $\left(\widehat{X}^{+}\right)^{2}=\frac{1}{2} \widehat{X}^{+} \cdot\left[\hat{H}, \widehat{X}^{+}\right]$(why?). Hence we have Trace $\left(\left(\widehat{X}^{+}\right)^{2}\right)=0$ (why?). From that you may follow $\widehat{X}^{+}=0$ (how?). Simplicity of $\mathfrak{s l}(2, \mathbb{R})$ then yields $\operatorname{Kern}(T)=\mathfrak{s l}(2, \mathbb{R})$. Clearly, $\mathfrak{s l}(2, \mathbb{R})$ is a Lie-subalgebra of $\mathfrak{s l}(2, \mathbb{C})$. But the smallest ideal in $\mathfrak{s l}(2, \mathbb{C})$ containing $\mathfrak{s l}(2, \mathbb{R})$ (its "Idealiser") is $\mathfrak{s l}(2, \mathbb{C})$ itself (why?). Hence any Lie-homomorphismus from $\mathfrak{s l}(2, \mathbb{C})$ to $\mathfrak{u}(n)$ is trivial.

Problem 6

Let V be a real vector space with non-degenerate bilinear form $\omega: \mathrm{V} \times \mathrm{V} \rightarrow \mathbb{R}$, which we assume to be either symmetric ($\epsilon=1$) or antisymmetric ($\epsilon=-1$); hence $\omega(v, w)=\epsilon \omega(w, v)$. We consider the group $\mathrm{O}(\mathrm{V}, \omega)$ of all ω-preserving linear maps (called the generalised orthogonal group of V with respect to ω):

$$
\begin{equation*}
\mathrm{O}(\mathrm{~V}, \omega):=\{A \in \mathrm{GL}(\mathrm{~V}): \omega(A v, A w)=\omega(v, w) \forall v, w \in \mathrm{~V}\} \tag{7}
\end{equation*}
$$

1. Show that $\operatorname{Lie}(O(V, \omega))$ is given by all ω-antisymmetric endomorphisms

$$
\begin{equation*}
\operatorname{Lie}(\mathrm{O}(\mathrm{~V}, \omega)):=\{\mathrm{X} \in \operatorname{End}(\mathrm{~V}): \omega(\mathrm{X} v, w)=-\omega(v, \mathrm{X} w) \forall v, w \in \mathrm{~V}\} \tag{8}
\end{equation*}
$$

2. Let $\left\{e_{a} \mid a=1, \cdots, n\right\}$ be a basis of V with respect to which we write for $w=$ $\mathrm{V}^{*} \otimes \mathrm{~V}^{*}$ and $\mathrm{X} \in \operatorname{End}(\mathrm{V}) \cong \mathrm{V} \otimes \mathrm{V}^{*}$ the the components $\omega_{\mathrm{ab}}:=\omega\left(e_{\mathrm{a}}, e_{\mathrm{b}}\right)$ and $X\left(e_{b}\right)=X^{\mathrm{a}}{ }_{\mathrm{b}} e_{\mathrm{a}}$. Show that $X \in \operatorname{Lie}(O(V, \omega)) \Leftrightarrow X_{a b}=-\epsilon X_{b a}$, where $X_{a b}:=X_{b}^{n} \omega_{\text {na }}$.
3. Let $\left\{\theta^{a} \mid a=1, \cdots, n\right\}$ be the basis of V^{*} dual to $\left\{e_{a} \mid a=1, \cdots, n\right\}$ and define $\theta_{a}:=\omega_{a n} \theta^{n}$. Show that a basis for $\operatorname{Lie}(O(V, \omega))$ is given by the

$$
M_{a b}:=e_{a} \otimes \theta_{b}-\epsilon e_{b} \otimes \theta_{a} \begin{cases}a<b & \text { for } \epsilon=1 \tag{9}\\ a \leq b & \text { for } \epsilon=-1\end{cases}
$$

Note that the number of basis vectors is $n(n+1) / 2$ for $\epsilon=1$ and $n(n+1) / 2$ for $\epsilon=-1$.
4. Show that the Lie-products (commutators) of the basis vectors are

$$
\begin{equation*}
\left[M_{\mathrm{ab}}, M_{\mathrm{cd}}\right]=\omega_{\mathrm{ad}} M_{\mathrm{bc}}+\omega_{\mathrm{bc}} M_{\mathrm{ad}}-\epsilon \omega_{\mathrm{ac}} M_{\mathrm{bd}}-\epsilon \omega_{\mathrm{bd}} M_{\mathrm{ac}} \tag{10}
\end{equation*}
$$

Note that these cover the Lie-algebras for a large variety of groups, including the proper orthogonal groups and Lorentz groups in all dimensions (for $\epsilon=1$) and symplectic groups in all dimensions (for $\epsilon=-1$). Note also that the righthand side could have been written without explicit appearance of ϵ by writing $\epsilon \omega_{\mathrm{ac}}=\omega_{\mathrm{ca}}$ and $\epsilon \omega_{\mathrm{bd}}=\omega_{\mathrm{db}}$, but that would have somewhat destroyed the systematics of the index-permutations on the right-hand.

Problem 7

Let $\mathrm{G} \subset \mathrm{GL}(\mathrm{V})$ be a Lie-group. The corresponding "inhomogeneous group", denoted by IG, is defined to be IG $:=\mathrm{V} \rtimes_{\alpha} \mathrm{G}$, i.e. its semi-direct product with the abelian group $(\mathrm{V},+$) using the standard homomorphism $\alpha: G \rightarrow \operatorname{Aut}(\mathrm{~V}) \equiv \mathrm{GL}(\mathrm{V})$, given by $\alpha_{A}(a):=A a$ (application of A to $\left.a\right)$. Then $(a, A)(b, B)=(a+A b, A B)$.

1. Let $s \mapsto(b(s), B(s))$ be a differentiable curve through the identity, i.e. $a(0)=$ $0, \mathcal{A}(0)=_V$. An overdot denotes the derivative at $s=0$. Then

$$
\begin{align*}
\operatorname{Ad}_{(a, A)}(\dot{b}, \dot{B}): & =\left.\frac{d}{d s}\right|_{s=0}(a, A)(b(s), B(s))(a, A)^{-1} \tag{11}\\
& =\left(A \dot{b}-A \dot{B} A^{-1} a, A \dot{B} A^{-1}\right) .
\end{align*}
$$

2. Let now also $\mathrm{t} \mapsto(\mathrm{a}(\mathrm{t}), \mathrm{B}(\mathrm{t}))$ be a differentiable curve through the identity. Then

$$
\begin{equation*}
\operatorname{ad}_{(\dot{a}, \dot{A})}(\dot{\mathrm{b}}, \dot{\mathrm{~B}}):=\left.\frac{\mathrm{d}}{\mathrm{dt}}\right|_{\mathrm{t}=0} \operatorname{Ad}_{(\mathrm{a}(\mathrm{t}), \mathcal{A}(\mathrm{t}))}(\dot{\mathrm{b}}, \dot{\mathrm{~B}})=(\dot{\mathrm{A}} \dot{\mathrm{~b}}-\dot{\mathrm{B}} \dot{\mathrm{a}},[\dot{A}, \dot{\mathrm{~B}}]) . \tag{12}
\end{equation*}
$$

Problem 8

In this exercise we assume $G=G L(V)$. Then $\operatorname{Lie}(G)=\operatorname{End}(V) \cong V \otimes V^{*}$ and $\operatorname{Lie}(\mathrm{IG})=\mathrm{V} \oplus\left(\mathrm{V} \otimes \mathrm{V}^{*}\right)$ as vector space. We also want to consider the dual vector space to $\operatorname{Lie}(\mathrm{IG})$, which we call $[\operatorname{Lie}(\mathrm{IG})]^{*}$. If $\left\{e_{\mathrm{a}} \mid a=1, \cdots, n\right\}$ and $\left\{\theta^{\mathrm{a}} \mid a=\right.$ $1, \cdots, n\}$ are dual bases of V and V^{*} respectively, we write $(y, Y) \in \operatorname{Lie}(I G)$ as $y=y^{a} e_{a} \in V$ and $Y=Y_{b}^{a}{ }_{b} e_{a} \otimes \theta^{b} \in \operatorname{End}(V)$. Likewise, we write $(\sigma, \Sigma) \in \operatorname{Lie}($ IG $)$ as $\sigma=\sigma_{\mathrm{a}} \theta^{\mathrm{a}}$ and $\Sigma=\Sigma_{\mathrm{a}}{ }^{\mathrm{b}} \theta^{\mathrm{a}} \otimes \mathrm{e}_{\mathrm{b}}$. The action of (y, Y) under (σ, Σ) is then given by $(\sigma, \Sigma)[(y, Y)]=\sigma_{a} y^{a}+\Sigma_{a}{ }^{b} Y^{a}{ }_{b}$
From (11) we read off the adjoint representation Ad of the group IG on its own Liealgebra $\operatorname{Lie}(\mathrm{IG}):$ If $(a, \mathcal{A}) \in \operatorname{IG}$ and $(x, X) \in \operatorname{Lie}(I G)$ this is

$$
\begin{equation*}
\operatorname{Ad}_{(a, A)}(x, X)=\left(A x-\operatorname{Ad}_{A}(X) a, \operatorname{Ad}_{A}(X)\right), \tag{13}
\end{equation*}
$$

As always, given a representation of a group on a vector space, the dual space carries the corresponding dual representation, given by the inverse-transposed:

$$
\begin{equation*}
\operatorname{Ad}_{(\mathrm{a}, \mathrm{~A})}^{*}(\sigma, \Sigma):=(\sigma, \Sigma) \circ \operatorname{Ad}_{(\mathrm{a}, \mathrm{~A})^{-1}} . \tag{14}
\end{equation*}
$$

It is called the co-adjoint representation of IG.

1. Show that

$$
\begin{equation*}
\operatorname{Ad}_{(a, A)}^{*}(\sigma, \Sigma):=\left(A^{*} \sigma,\left(A^{*} \otimes A\right) \Sigma+A^{*} \sigma \otimes a\right), \tag{15}
\end{equation*}
$$

where A^{*} is the dual (inverse transposed) action of A on V^{*}.
2. How does the corresponding formula read if G is a proper subgroup of $G L(V)$, e.g., as in the previous Problem, the subgroup leaving the bilinear form ω invariant?

