Exercises for the Lecture on
 Theory of Fundamental Interactions
 (summer 2022)

by Domenico Giulini

Sheet 3

Problem 1

In the lecture we discussed the projection covering homomorphism $p: \operatorname{SU}(2) \rightarrow$ $\mathrm{SO}(3)$ that satisfies

$$
\begin{equation*}
A(\vec{x} \cdot \vec{\sigma}) A^{\dagger}=(R \vec{x}) \cdot \vec{\sigma} \tag{1}
\end{equation*}
$$

where σ_{a} are the Pauli-matrices. Let $\vec{n} \in \mathbb{R}^{3}$ be normalised.
Show that

$$
\begin{equation*}
A(\vec{n}, \theta):=\exp \left(-\frac{i}{2} \theta \vec{n} \cdot \vec{\sigma}\right) \tag{2}
\end{equation*}
$$

projects to a $\mathrm{SO}(3)$-rotation by an angle θ in the oriented plane (i.e. the sign matters) whose normal is \vec{n}. (Hint: You might find it useful to decompose \vec{x} into its parts parallel and perpendicular to \vec{n}.)

Problem 2

Show that any element $A \in \operatorname{SU}(2)$ is of the form

$$
A=\left(\begin{array}{cc}
a & b \tag{3}\\
-\bar{b} & \bar{a}
\end{array}\right)
$$

where $a, b \in \mathbb{C}$ satisfying $|a|^{2}+|b|^{2}=1$ and an overbar denotes complex conjugation. Argue that $\mathrm{SU}(2)$ is connected and simply connected.

Problem 3

Let V be a real vector space and ω a non-degenerate bilinear form. We have seen that

$$
\begin{align*}
\mathrm{O}(\mathrm{~V}, \omega) & :=\{\mathrm{A} \in \mathrm{GL}(\mathrm{~V}): \omega(\mathrm{A} v, \mathrm{~A} w)=\omega(v, w), \forall v, w \in \mathrm{~V}\} \tag{4}\\
\operatorname{Lie}(\mathrm{O}(\mathrm{~V}, \omega)) & :=\{\mathrm{X} \in \operatorname{End}(\mathrm{~V}): \omega(\mathrm{X} v, w)+\omega(v, \mathrm{X} w)=0, \forall v, w \in \mathrm{~V}\} . \tag{5}
\end{align*}
$$

There are two linear maps \dagger and \# from $\operatorname{End}(\mathrm{V})$ to itself, defined by

$$
\begin{align*}
& \omega(X v, w)=\omega\left(v, X^{\dagger} w\right) \tag{6}\\
& \omega(v, X w)=\omega\left(X^{\#} v, w\right) \tag{7}
\end{align*}
$$

for all $v, w \in \mathrm{~V}$.

1. Show that each of these maps is the inverse of the other on all of $\operatorname{End}(V)$ and that on the subsets $\mathrm{O}(\mathrm{V}, \omega) \subset \operatorname{End}(\mathrm{V})$ and $\operatorname{Lie}(\mathrm{O}(\mathrm{V}, \omega)) \subset \operatorname{End}(\mathrm{V})$ they coincide and are hence involutions. If ω is symmetric or antisymmetric, the two maps coincide on all of $\operatorname{End}(\mathrm{V})$
2. Assuming that ω is symmetric or antisymmetric, show that the two linear maps $\mathrm{P}_{ \pm}: \operatorname{End}(\mathrm{V}) \rightarrow \operatorname{End}(\mathrm{V})$

$$
\begin{equation*}
\mathrm{P}_{ \pm}(\mathrm{X}):=\frac{1}{2}\left(\mathrm{X} \pm \mathrm{X}^{\#}\right) \tag{8}
\end{equation*}
$$

are idempotent, i.e. $P_{ \pm} \circ P_{ \pm}=i d_{E n d(V)}$ and satisfy $P_{ \pm} \circ P_{\mp}=0$.
3. Let $\omega_{\downarrow}: \mathrm{V} \rightarrow \mathrm{V}^{*}, v \mapsto \omega(\nu, \cdot)$ be the usual isomorphism induced by ω and $\omega_{\uparrow}: V^{*} \rightarrow \mathrm{~V}$ its inverse. Show that if ω is either symmetric $\epsilon=1$ or antisymmetric $\epsilon=-1$, then

$$
\begin{equation*}
\omega_{\downarrow}^{\top}=\epsilon \omega_{\downarrow} \quad \text { and } \quad \omega_{\uparrow}^{\top}=\epsilon \omega_{\uparrow}, \tag{9}
\end{equation*}
$$

where T indicates the usual transposed map. (Recall: If $\mathrm{f}: \mathrm{V} \rightarrow \mathrm{W}$ is a linear map between vector spaces, then $f^{\top}: W^{*} \rightarrow V^{*}$, given by $f(\alpha):=\alpha \circ f$ is the transposed map. Note that only for $\mathrm{W}=\mathrm{V}^{*}$ are these maps between the same vector spaces.)
4. Show that, irrespectively of any symmetry assumptions on ω, we have

$$
\begin{equation*}
X^{\#}=\omega_{\uparrow} \circ X^{\top} \circ \omega_{\downarrow}, \tag{10}
\end{equation*}
$$

and hence

$$
\begin{align*}
\mathrm{O}(\mathrm{~V}, \omega) & :=\left\{A \in \mathrm{GL}(\mathrm{~V}): \omega_{\downarrow} \circ \mathrm{A} \circ \omega_{\uparrow}=\left(\mathrm{A}^{-1}\right)^{\top}\right\}, \tag{11}\\
\operatorname{Lie}(\mathrm{O}(\mathrm{~V}, \omega)) & :=\left\{\mathrm{X} \in \operatorname{End}(\mathrm{~V}): \omega_{\downarrow} \circ \mathrm{X} \circ \omega_{\uparrow}=-\mathrm{X}^{\top}\right\} . \tag{12}
\end{align*}
$$

