Exercises for the Lecture on

Theory of Fundamental Interactions (summer 2022)

by Domenico Giulini

Sheet 3

Problem 1

In the lecture we discussed the projection covering homomorphism $p:SU(2)\to SO(3)$ that satisfies

$$A(\vec{x} \cdot \vec{\sigma})A^{\dagger} = (R\vec{x}) \cdot \vec{\sigma} \tag{1}$$

where σ_a are the Pauli-matrices. Let $\vec{n} \in \mathbb{R}^3$ be normalised.

Show that

$$A(\vec{n},\theta) := \exp\left(-\frac{i}{2}\theta \ \vec{n} \cdot \vec{\sigma}\right)$$
(2)

projects to a SO(3)-rotation by an angle θ in the oriented plane (i.e. the sign matters) whose normal is \vec{n} . (Hint: You might find it useful to decompose \vec{x} into its parts parallel and perpendicular to \vec{n} .)

Problem 2

Show that *any* element $A \in SU(2)$ is of the form

$$A = \begin{pmatrix} a & b \\ -\bar{b} & \bar{a} \end{pmatrix}$$
(3)

where $a, b \in \mathbb{C}$ satisfying $|a|^2 + |b|^2 = 1$ and an overbar denotes complex conjugation. Argue that SU(2) is connected and simply connected.

Problem 3

Let V be a real vector space and ω a non-degenerate bilinear form. We have seen that

$$O(V,\omega) := \left\{ A \in GL(V) : \omega(Av, Aw) = \omega(v, w), \forall v, w \in V \right\},$$
(4)

$$\operatorname{Lie}(O(V,\omega)) := \left\{ X \in \operatorname{End}(V) : \omega(Xv,w) + \omega(v,Xw) = 0, \forall v, w \in V \right\}.$$
(5)

There are two linear maps \dagger and # from End(V) to itself, defined by

$$\omega(X\nu, w) = \omega(\nu, X^{\dagger}w), \qquad (6)$$

$$\omega(v, Xw) = \omega(X^{\#}v, w), \qquad (7)$$

for all $v, w \in V$.

- 1. Show that each of these maps is the inverse of the other on all of End(V) and that on the subsets $O(V, \omega) \subset End(V)$ and $Lie(O(V, \omega)) \subset End(V)$ they coincide and are hence involutions. If ω is symmetric or antisymmetric, the two maps coincide on all of End(V)
- 2. Assuming that ω is symmetric or antisymmetric, show that the two linear maps $P_{\pm}: End(V) \rightarrow End(V)$

$$\mathsf{P}_{\pm}(X) := \frac{1}{2} \left(X \pm X^{\#} \right) \tag{8}$$

are idempotent, i.e. $P_\pm\circ P_\pm=id_{End(V)}$ and satisfy $P_\pm\circ P_\mp=0.$

3. Let $\omega_{\downarrow} : V \to V^*$, $\nu \mapsto \omega(\nu, \cdot)$ be the usual isomorphism induced by ω and $\omega_{\uparrow} : V^* \to V$ its inverse. Show that if ω is either symmetric $\varepsilon = 1$ or antisymmetric $\varepsilon = -1$, then

$$\omega_{\downarrow}^{\top} = \epsilon \omega_{\downarrow} \quad \text{and} \quad \omega_{\uparrow}^{\top} = \epsilon \omega_{\uparrow},$$
(9)

where \top indicates the usual transposed map. (Recall: If $f: V \to W$ is a linear map between vector spaces, then $f^{\top}: W^* \to V^*$, given by $f(\alpha) := \alpha \circ f$ is the transposed map. Note that only for $W = V^*$ are these maps between the same vector spaces.)

4. Show that, irrespectively of any symmetry assumptions on ω , we have

$$X^{\#} = \omega_{\uparrow} \circ X^{\top} \circ \omega_{\downarrow}, \qquad (10)$$

and hence

$$O(\mathbf{V},\boldsymbol{\omega}) := \left\{ \mathbf{A} \in \mathsf{GL}(\mathbf{V}) : \boldsymbol{\omega}_{\downarrow} \circ \mathbf{A} \circ \boldsymbol{\omega}_{\uparrow} = (\mathbf{A}^{-1})^{\top} \right\}, \qquad (11)$$

$$\operatorname{Lie}(O(V,\omega)) := \left\{ X \in \operatorname{End}(V) : \omega_{\downarrow} \circ X \circ \omega_{\uparrow} = -X^{\top} \right\}.$$
(12)