# Exercises for the Lecture on <br> Theory of Fundamental Interactions <br> (summer 2022) 

by Domenico Giulini

## Sheet 4

## Problem 1

Like in the lecture, let $\sigma^{0}=\tilde{\sigma}^{0}=\mathrm{E}_{2}, \sigma^{\mathrm{a}}=-\tilde{\sigma}^{\mathrm{a}}=\mathrm{a}$-th Pauli matrix and $\sigma_{\alpha}=$ $\eta_{\alpha \beta} \sigma^{\beta}, \tilde{\sigma}_{\alpha}=\eta_{\alpha \beta} \tilde{\sigma}^{\beta}$.

1. Show that for any $M \in \operatorname{End}\left(\mathbb{C}^{2}\right)$ (i.e. complex $2 \times 2$ matrix)

$$
\begin{equation*}
\sigma_{\alpha} M \tilde{\sigma}^{\alpha}=2 \operatorname{trace}(M) E_{2} . \tag{1}
\end{equation*}
$$

2. Show that (indices in round brackets are symmetrised over, $\eta_{\alpha \beta}=$ $\operatorname{diag}(1,-1,-1,-1))$

$$
\begin{equation*}
\sigma_{\left(\alpha \tilde{\sigma}_{\beta)}\right.}=E_{2} \eta_{\alpha \beta} . \tag{2}
\end{equation*}
$$

3. Define a map $p: S L(2, \mathbb{C}) \rightarrow G L\left(\mathbb{R}^{4}\right)$ where $L:=p(A)$ is implicitly defined by

$$
\begin{equation*}
A\left(x^{\alpha} \sigma_{\alpha}\right) A^{\dagger}=\mathrm{L}^{\alpha}{ }_{\mu} x^{\mu} \sigma_{\alpha} \tag{3}
\end{equation*}
$$

Show that

$$
\begin{equation*}
\mathrm{L}_{\beta}^{\alpha}=\frac{1}{2} \operatorname{trace}\left(\tilde{\sigma}^{\alpha} A \sigma_{\beta} A^{\dagger}\right) \tag{4}
\end{equation*}
$$

4. Show that $p$ is a group homomorphism the image of which are the proper orthochronous Lorentz transformations and the kernel of which is $\left\{ \pm E_{2}\right\}$.
5. Show that

$$
\begin{equation*}
A=p^{-1}(\mathrm{~L})= \pm \frac{\sigma_{\alpha} \mathrm{L}^{\alpha}{ }_{\beta} \tilde{\sigma}^{\beta}}{\sqrt{\operatorname{det}\left(\sigma_{\alpha} \mathrm{L}_{\beta}^{\alpha} \tilde{\sigma}^{\beta}\right)}} \tag{5}
\end{equation*}
$$

for those $L$ for which the determinant in the denominator on the right-hand side does not vanish.

## Problem 2

Let $\eta$ be a symmetric, non-degenerate bilinear form on the vector space $V$ of dimension $n>2$. We know that the Lie algebra of the corresponding inhomogeneous group $V \rtimes \mathrm{O}(\mathrm{V}, \eta)$ is given by $\operatorname{Lie}(\mathrm{V} \rtimes \mathrm{O}(\mathrm{V}, \eta))=\operatorname{Span}\left\{\mathrm{P}_{\mathrm{a}}, \mathrm{M}_{\mathrm{ab}} \mid 1 \leq \mathrm{a}<\mathrm{b} \leq n\right\}$, with

$$
\begin{align*}
& {\left[\mathrm{P}_{\mathrm{a}}, \mathrm{P}_{\mathrm{b}}\right]=0,}  \tag{6a}\\
& {\left[M_{\mathrm{ab}}, P_{c}\right]=\eta_{\mathrm{bc}} P_{a}-\eta_{\mathrm{ac}} P_{\mathrm{b}},}  \tag{6b}\\
& {\left[M_{\mathrm{ab}}, M_{c d}\right]=\eta_{\mathrm{ad}} M_{\mathrm{bc}}+\eta_{\mathrm{bc}} M_{\mathrm{ad}}-\eta_{\mathrm{ac}} M_{\mathrm{bd}}-\eta_{\mathrm{bd}} M_{\mathrm{ac}} .} \tag{6c}
\end{align*}
$$

1. Show explicitly (we already know this from general considerations) that this Lie-Algebra, which we call L , is perfect, i.e. $[\mathrm{L}, \mathrm{L}]=\mathrm{L}$.
Hint: Contract the right-hand of (6) in an appropriate way with $\eta^{\mathrm{ab}}$ so that you can solve for the $\mathrm{P}_{\mathrm{a}}$ 's and $\mathrm{M}_{\mathrm{ab}}$ 's in terms of sums of Lie-products.
2. Determine all one-dimensional representations of $L$ and compare this with all one-dimensional representations of the translations only, which form an abelian ideal. What is remarkable here?
3. We consider a basis change of the form

$$
\begin{align*}
& \mathrm{P}_{\mathrm{a}} \mapsto \overline{\mathrm{P}}_{\mathrm{a}}:=\mathrm{P}_{\mathrm{a}},  \tag{7a}\\
& \mathrm{M}_{\mathrm{ab}} \mapsto \overline{\mathrm{M}}_{\mathrm{ab}}:=\mathrm{M}_{\mathrm{ab}}-\left(\mathrm{X}_{\mathrm{a}} \mathrm{P}_{\mathrm{b}}-\mathrm{X}_{\mathrm{b}} \mathrm{P}_{\mathrm{a}}\right), \tag{7b}
\end{align*}
$$

where $X_{a}$ are the covariant components of a fixed vector in $V$, representing a translation. (This change of basis corresponds to a change of the origin o in affine space: $\mathrm{o} \mapsto \overline{\mathrm{o}}:=\mathrm{o}+\mathrm{X}$.) Show that the Lie-producs of the new basis ( $\bar{P}_{a}, \bar{M}_{a b}$ ) are identical to (6), i.e. are given by replacing ( $P_{a}, M_{a b}$ ) with ( $\bar{P}_{a}, \bar{M}_{a b}$ ) in (6).

## Problem 3

The situation is just as in Problem 2. The group $\mathrm{G}:=\mathrm{V} \rtimes \mathrm{O}(\mathrm{V}, \eta)$ acts on V as follows:

$$
\begin{equation*}
\phi: G \times V \rightarrow V, \quad((a, \mathcal{A}), v) \mapsto \phi_{(a, \mathcal{A})}(v):=A v+a \tag{8}
\end{equation*}
$$

Let $C^{\infty}(\mathrm{V}, \mathbb{F})$ be the infinite dimensional vector space of $\mathbb{F}$-valued (either $\mathbb{R}$ of $\mathbb{C}$ ) smooth functions on V . On $\mathrm{C}^{\infty}(\mathrm{V}, \mathbb{F})$ the group is represented via

$$
\begin{equation*}
\mathrm{T}: \mathrm{G} \times \mathrm{C}^{\infty}(\mathrm{V}, \mathbb{F}) \rightarrow \mathrm{C}^{\infty}(\mathrm{V}, \mathbb{F}), \quad \mathrm{T}_{(\mathrm{a}, \mathcal{A})} \mathrm{f}:=\mathrm{f} \circ \phi_{(\mathrm{a}, \mathrm{~A})}^{-1} . \tag{9}
\end{equation*}
$$

1. Show that this is indeed a representation
2. We are interested in the corresponding representation $\dot{\dagger}$ of $\operatorname{Lie}(\mathrm{V} \rtimes \mathrm{O}(\mathrm{V}, \eta))$ on $C^{\infty}(\mathrm{V}, \mathbb{F})$. For that consider, as usual, a curve $s \mapsto(a(s), A(s))$ in $G$ with $(a(0), \mathcal{A}(0))=\left(0, i d_{V}\right)$ and $d /\left.d s\right|_{s=0}(a(s), \mathcal{A}(s))=(\dot{\mathrm{a}}, \dot{A}) \in \operatorname{Lie}(V \rtimes$ $O(V, \eta))$. Show that

$$
\begin{equation*}
\dot{\mathrm{T}}_{(\dot{a}, \dot{\mathrm{~A}})} \mathrm{f}(x)=\operatorname{Df}(x)(-\dot{\mathrm{a}}-\dot{\mathrm{A}} x) . \tag{10}
\end{equation*}
$$

3. Let $\left\{e_{a} \mid a=1, \cdots, n\right\}$ be a basis of $V$ with dual basis $\left\{\theta^{a} \mid a=1, \cdots, n\right\}$ of $V^{*}$. If we set $\theta_{a}:=\eta_{\downarrow}\left(e_{a}\right)=\eta_{a b} \theta^{b}$, where $\eta_{a b}=\eta\left(e_{a}, e_{b}\right)$, then the $P_{a}:=$ $\left(e_{a}, 0\right)$ and $M_{a b}:=\left(0, e_{a} \otimes \theta_{b}-e_{b} \otimes \theta_{a}\right)$ form a Basis of $\operatorname{Lie}(V \rtimes O(V, \eta))$ which just satisfies the relations (6). Show:

$$
\begin{equation*}
{\dot{T_{P a}}}^{f}=-\partial_{a} f, \quad \dot{\mathrm{~T}}_{M_{a b}} f=\left(x_{a} \partial_{b}-x_{b} \partial_{a}\right) f \tag{11}
\end{equation*}
$$

Here $x_{\mathrm{a}}: \mathrm{V} \rightarrow \mathbb{R}, \chi \mapsto \eta\left(x, e_{\mathrm{a}}\right)$ are the co-variant coordinate functions with respect to the given basis. We can say that the images of the basis $\left\{\mathrm{P}_{\mathrm{a}}, M_{a b}\right.$ : $1 \leq a<b \leq n\}$ of $\operatorname{Lie}(V \rtimes O(V, \eta))$ under $\dagger$ are the differential operators $-\partial_{a}$ and ( $x_{a} \partial_{b}-x_{b} \partial_{a}$ ), respectively. Check explicitly that they obey (6).

## Problem 4

Consider again the group $\mathrm{O}(\mathrm{V}, \eta)$, where V is a 5 -dimensional real vector space and $\eta$ a symmetric, non-degenerate bilinear form of signature $(+,-,-,-, \sigma)$ ist, where $\sigma=\mp 1$. In case $\sigma=-1$ the group is also written $\mathrm{O}(1,4)$ and called de Sitter-group, in case $\sigma=+1$ it's written $\mathrm{O}(2,3)$ and called anti-de Sitter-group. A basis of the corresponding 10 -dimensional Lie-algebra is $\left\{\mathrm{M}_{\mathrm{ab}}: 0 \leq \mathrm{a}<\mathrm{b} \leq 4\right\}$ which satisfies (6c).
We introduce the following renaming of the basis elements, where $a, b, c \in\{1,2,3\}$ und $\varepsilon_{\mathrm{abc}}=\operatorname{sign}\binom{123}{\mathrm{abc}}$, independent of whether the indices on $\varepsilon$ are upstairs or downstairs (for the sake of obeying the summation convention):

$$
\begin{align*}
\mathrm{D}_{\mathrm{a}} & :=\frac{1}{2} \varepsilon_{\mathrm{a}}{ }^{\mathrm{bc}} M_{\mathrm{bc}}  \tag{12a}\\
\mathrm{~K}_{\mathrm{a}} & :=\mathrm{M}_{0 \mathrm{a}}  \tag{12b}\\
\mathrm{~T}_{\mathrm{a}} & :=\mathrm{M}_{\mathrm{a} 4}  \tag{12c}\\
\mathrm{~T}_{0} & :=\mathrm{M}_{04} \tag{12d}
\end{align*}
$$

1. Show that the Lie-algebras of $\operatorname{Lie}(\mathrm{O}(1,4))$ and $\operatorname{Lie}(\mathrm{O}(2,3))$ are characterised by the following 45 relations:

$$
\begin{align*}
& {\left[\mathrm{D}_{\mathrm{a}}, \mathrm{D}_{\mathrm{b}}\right]=\varepsilon_{\mathrm{ab}}{ }^{\mathrm{c}} \mathrm{D}_{\mathrm{c}},}  \tag{13a}\\
& {\left[D_{a}, K_{b}\right]=\varepsilon_{a b}{ }^{c} K_{c},}  \tag{13b}\\
& {\left[\mathrm{D}_{\mathrm{a}}, \mathrm{~T}_{\mathrm{b}}\right]=\varepsilon_{\mathrm{ab}}{ }^{\mathrm{c}} \mathrm{~T}_{\mathrm{c}},}  \tag{13c}\\
& {\left[\mathrm{D}_{\mathrm{a}}, \mathrm{~T}_{\mathrm{o}}\right]=0 \text {, }}  \tag{13d}\\
& {\left[\mathrm{K}_{\mathrm{a}}, \mathrm{~K}_{\mathrm{b}}\right]=-\varepsilon_{\mathrm{ab}}{ }^{\mathrm{c}} \mathrm{D}_{\mathrm{c}} \text {, }}  \tag{13e}\\
& {\left[\mathrm{K}_{\mathrm{a}}, \mathrm{~T}_{\mathrm{b}}\right]=-\delta_{\mathrm{ab}} \mathrm{~T}_{0} \text {, }}  \tag{13f}\\
& {\left[\mathrm{K}_{\mathrm{a}}, \mathrm{~T}_{0}\right]=-\mathrm{T}_{\mathrm{a}} \text {, }}  \tag{13~g}\\
& {\left[T_{a}, T_{b}\right]=-\sigma \varepsilon_{a b}{ }^{c} D_{c} \text {, }}  \tag{13h}\\
& {\left[\mathrm{T}_{\mathrm{a}}, \mathrm{~T}_{0}\right]=\sigma \mathrm{K}_{\mathrm{a}} .} \tag{13i}
\end{align*}
$$

2. Show that the linear maps defined by

$$
\begin{align*}
& \Pi:\left(T_{0}, T_{a}, K_{a}, D_{a}\right) \mapsto\left(T_{0},-T_{a},-K_{a}, D_{a}\right),  \tag{14a}\\
& \Theta:\left(T_{0}, T_{a}, K_{a}, D_{a}\right) \mapsto\left(-T_{0}, T_{a},-K_{a}, D_{a}\right),  \tag{14b}\\
& \Gamma:\left(T_{0}, T_{a}, K_{a}, D_{a}\right) \mapsto\left(-T_{0},-T_{a}, K_{a}, D_{a}\right), \tag{14c}
\end{align*}
$$

are Lie-automorphisms. How do you interpret them?
3. Show that the linear subspaces $\mathrm{U}_{1}:=\operatorname{span}\left\{\mathrm{D}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}: 1 \leq \mathrm{a}, \mathrm{b} \leq 3\right\}$ and $\mathrm{U}_{2}:=\operatorname{span}\left\{\mathrm{D}_{\mathrm{a}}, \mathrm{T}_{\mathrm{b}}: 1 \leq \mathrm{a}, \mathrm{b} \leq 3\right\}$ are Lie-subalgebras. Perform the contractions over those. Do you know the Lie-algebras so obtained? What is their difference? What Lie-algebra is obtained if you perform these contractions one after the other? Does the result depend on the order? At what Lie-algebras do you arrive at if after the contractionen over either $\mathrm{U}_{1}$ or $\mathrm{U}_{2}$ you perform the contraction over $\mathrm{U}_{3}:=\operatorname{span}\left\{\mathrm{D}_{\mathrm{a}}, \mathrm{T}_{0}: a=1,2,3\right\}$. Again: do you know these Lie-algebras? What is their difference?

## Problem 5

This Problem is directly connected with Problem 2 and tries to convey the conceptually important idea of what it takes to define "position observables" in special-relativistic theories.

Let $\operatorname{Lie}(V \rtimes \mathrm{O}(\mathrm{V}, \eta))$ be faithfully represented on the (infinite-dimensional) Liealgebra $C^{\infty}(P, \mathbb{R})$ of real-valued smooth functions on the phase-space $P$ of some mechanical system. The Lie-product on $C^{\infty}(P, \mathbb{R})$ is the Poisson bracket. Hence we have an embedding $\operatorname{Lie}(V \rtimes \mathrm{O}(\mathrm{V}, \eta)) \hookrightarrow \mathrm{C}^{\infty}(\mathrm{P}, \mathbb{R})$. Under this embedding the $\left(\mathrm{P}_{\mathrm{a}}, \mathrm{M}_{\mathrm{ab}}\right)$ become real-valued functions on $P$ obeying (6) if $[\cdot, \cdot]$ is replaced by the Poissonbracket $\{\cdot, \cdot\}$. The values of these phase-space functions are the conserved quantities corresponding to the group of translations and Lorentz-transformations, i.e., energymomentum and centre-of-mass and angular-momentum. Unlike in the original Liealgebra $\operatorname{Lie}(V \rtimes \mathrm{O}(\mathrm{V}, \eta))$, there is an additional associative product in $\mathrm{C}^{\infty}(\mathrm{P}, \mathbb{R})$ given by pointwise multiplication. this allows us to form polynomials and broken rational functions from the phase-space functions ( $\mathrm{P}_{\mathrm{a}}, \mathrm{M}_{\mathrm{ab}}$ ).
An "inertial system" (or "state of motion") is characterised by $\mathfrak{n} \in \mathrm{V}$ with $\eta(n, n)=$ 1. We now consider the phase-space functions defined by (7), which depend on $X \in V$, and ask for which values of $X$ the four functions $\bar{M}_{a b} n^{b}$ have zeros (i.e. the corresponding conserved quantities vanish):

$$
\begin{equation*}
\bar{M}_{a b} n^{b}=0 . \tag{15}
\end{equation*}
$$

Corresponding to (7b) this leads to the condition

$$
\begin{equation*}
\left(\left(P_{c} n^{c}\right) \eta_{a b}-P_{a} n_{b}\right) X^{b}=M_{a b} n^{b} . \tag{16}
\end{equation*}
$$

This is to be read as four conditions on the four real numbers $X^{b}$ for each phase-space point. In what follows we restrict to those points on phase space where $\mathrm{P}_{\mathrm{c}} \mathrm{n}^{\mathfrak{c}} \neq 0$ (which is the energy of the system in the inertial frame characterised by $n$ ).

Show that the general solution of (16) is then given by the one-parameter family (parameter $\lambda$ ):

$$
\begin{equation*}
X_{a}(\lambda)=\frac{1}{P_{c} n^{c}}\left(P_{a} \lambda+M_{a b} n^{b}\right) \tag{17}
\end{equation*}
$$

The map $\lambda \mapsto X(\lambda)$ defines a wordline in spacetime which is sometimes called the "central-line" or the worldline of the "centre-of-mass". It is timelike if and only if P is timelike, i.e. $\mathrm{P}_{\mathrm{a}} \mathrm{P}_{\mathrm{b}} \eta^{\mathrm{ab}}>0$.

By construction, this worldline defines the set of all points in Minkowski space (here identified with V ) at which the conserved quantity associated with boost symmetry vanishes. This worldline not only depends on the state of the system but also on the choice of the inertial system $n$. The latter dependence is a new feature in Special Relativity. It does not exist in classical mechanics (invariant under the inhomogeneous Galilei group), where the definitions of "centre-of-mass" with respect to inertial systems lead to a unique worldline in spacetime.
Hint: In order to derive (17) use that the map Abbildung $\Pi: \mathrm{V} \rightarrow \mathrm{V}$ with Components $\Pi_{b}^{a}=\delta_{b}^{a}-\frac{p^{a} n_{b}}{P_{c} n^{c}}$ is just the projection of $V$ onto $n^{\perp}:=\{v \in V: \eta(v, n)=0\}$ parallel to $\mathrm{P} \in \mathrm{V}$ (hence not die orthogonalprojection onto $\mathrm{n}^{\perp}$, which would be parallel to n ).
With respect to the solution worldline $X(\lambda)$ we can form $\bar{M}_{a b}$. Show that it is independent of $\lambda$. This $\bar{M}_{a b}$ is generally called the spin tensor. It is a phase-space function with values in $V^{*} \wedge V^{*}$ ) which depends on the inertial system (i.e. on $n$ ). We have

$$
\begin{equation*}
S_{a b}=M_{a b}+\frac{\left(P_{a} M_{b c}-P_{b} M_{a c}\right) n^{c}}{n^{c} P_{c}} \tag{18}
\end{equation*}
$$

Calculate the Poisson-brackets of the four phase-space functions $X^{a}(\lambda)$ defined through (17) amongst themselves and with $P_{a}$ and $M_{a b}$. To what extent would you say that the $X^{a}$ correspond to space-time "position observables"?

