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Problem 1

Like in the lecture, let σ0 = σ̃0 = E2, σa = −σ̃a = a-th Pauli matrix and σα =
ηαβσ

β, σ̃α = ηαβσ̃
β.

1. Show that for any M ∈ End(C2) (i.e. complex 2× 2 matrix)

σαMσ̃α = 2 trace(M) E2 . (1)

2. Show that (indices in round brackets are symmetrised over, ηαβ =
diag(1,−1,−1,−1))

σ(ασ̃β) = E2 ηαβ . (2)

3. Define a map p : SL(2,C) → GL(R4) where L := p(A) is implicitly defined by

A(xασα)A
† = Lαµx

µσα . (3)

Show that
Lαβ = 1

2trace(σ̃
αAσβA

†). (4)

4. Show that p is a group homomorphism the image of which are the proper or-
thochronous Lorentz transformations and the kernel of which is {±E2}.

5. Show that

A = p−1(L) = ±
σαL

α
βσ̃

β

!
det

"
σαL

α
βσ̃

β
# (5)

for those L for which the determinant in the denominator on the right-hand side
does not vanish.
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Problem 2

Let η be a symmetric, non-degenerate bilinear form on the vector space V of dimension
n > 2. We know that the Lie algebra of the corresponding inhomogeneous group
V ⋊O(V,η) is given by Lie

"
V ⋊O(V,η)

#
= Span{Pa,Mab | 1 ≤ a < b ≤ n}, with

[Pa, Pb] = 0 , (6a)

[Mab, Pc] = ηbcPa − ηacPb , (6b)

[Mab,Mcd] = ηadMbc + ηbcMad − ηacMbd − ηbdMac . (6c)

1. Show explicitly (we already know this from general considerations) that this
Lie-Algebra, which we call L, is perfect, i.e. [L, L] = L.
Hint: Contract the right-hand of (6) in an appropriate way with ηab so that you
can solve for the Pa’s and Mab’s in terms of sums of Lie-products.

2. Determine all one-dimensional representations of L and compare this with all
one-dimensional representations of the translations only, which form an abelian
ideal. What is remarkable here?

3. We consider a basis change of the form

Pa $→ P̄a := Pa , (7a)

Mab $→ M̄ab := Mab − (XaPb − XbPa) , (7b)

where Xa are the covariant components of a fixed vector in V , representing
a translation. (This change of basis corresponds to a change of the origin o

in affine space: o $→ ō := o + X.) Show that the Lie-producs of the new
basis (P̄a, M̄ab) are identical to (6), i.e. are given by replacing (Pa,Mab) with
(P̄a, M̄ab) in (6).

Problem 3

The situation is just as in Problem 2. The group G := V⋊O(V,η) acts on V as follows:

φ : G× V → V ,
"
(a,A), v

#
$→ φ(a,A)(v) := Av+ a . (8)

Let C∞(V,F) be the infinite dimensional vector space of F-valued (either R of C)
smooth functions on V . On C∞(V,F) the group is represented via

T : G× C∞(V,F) → C∞(V,F) , T(a,A)f := f ◦ φ−1
(a,A) . (9)

1. Show that this is indeed a representation

2. We are interested in the corresponding representation Ṫ of Lie(V ⋊ O(V,η))
on C∞(V,F). For that consider, as usual, a curve s $→ (a(s), A(s)) in G

with (a(0), A(0)) = (0, idV) and d/ds|s=0(a(s), A(s)) = (ȧ, Ȧ) ∈ Lie(V ⋊
O(V,η)). Show that

Ṫ(ȧ,Ȧ)f(x) = Df(x)(−ȧ− Ȧx) . (10)
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3. Let {ea | a = 1, · · · , n} be a basis of V with dual basis {θa | a = 1, · · · , n} of
V∗. If we set θa := η↓(ea) = ηabθ

b, where ηab = η(ea, eb), then the Pa :=
(ea, 0) and Mab := (0, ea ⊗ θb − eb ⊗ θa) form a Basis of Lie(V ⋊O(V,η))
which just satisfies the relations (6). Show:

ṪPaf = −∂af , ṪMab
f = (xa∂b − xb∂a)f . (11)

Here xa : V → R, x $→ η(x, ea) are the co-variant coordinate functions with
respect to the given basis. We can say that the images of the basis {Pa,Mab :
1 ≤ a < b ≤ n} of Lie(V⋊O(V,η)) under Ṫ are the differential operators −∂a
and (xa∂b − xb∂a), respectively. Check explicitly that they obey (6).

Problem 4

Consider again the group O(V,η), where V is a 5-dimensional real vector space and
η a symmetric, non-degenerate bilinear form of signature (+,−,−,−,σ) ist, where
σ = ∓1. In case σ = −1 the group is also written O(1, 4) and called de Sitter-group,
in case σ = +1 it’s written O(2, 3) and called anti-de Sitter-group. A basis of the
corresponding 10-dimensional Lie-algebra is {Mab : 0 ≤ a < b ≤ 4} which satisfies
(6c).

We introduce the following renaming of the basis elements, where a, b, c ∈ {1, 2, 3}

und εabc = sign
$

123
abc

%
, independent of whether the indices on ε are upstairs or

downstairs (for the sake of obeying the summation convention):

Da := 1
2ε

bc
a Mbc , (12a)

Ka := M0a , (12b)

Ta := Ma4 , (12c)

T0 := M04 . (12d)

1. Show that the Lie-algebras of Lie(O(1, 4)) and Lie(O(2, 3)) are characterised
by the following 45 relations:

[Da, Db] = ε c
ab Dc , (13a)

[Da, Kb] = ε c
ab Kc , (13b)

[Da, Tb] = ε c
ab Tc , (13c)

[Da, T0] = 0 , (13d)

[Ka, Kb] = −ε c
ab Dc , (13e)

[Ka, Tb] = −δab T0 , (13f)

[Ka, T0] = −Ta , (13g)

[Ta, Tb] = −σ ε c
ab Dc , (13h)

[Ta, T0] = σKa . (13i)
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2. Show that the linear maps defined by

Π : (T0, Ta, Ka, Da) $→ (T0,−Ta,−Ka, Da) , (14a)

Θ : (T0, Ta, Ka, Da) $→ (−T0, Ta,−Ka, Da) , (14b)

Γ : (T0, Ta, Ka, Da) $→ (−T0,−Ta, Ka, Da) , (14c)

are Lie-automorphisms. How do you interpret them?

3. Show that the linear subspaces U1 := span{Da, Kb : 1 ≤ a, b ≤ 3} and
U2 := span{Da, Tb : 1 ≤ a, b ≤ 3} are Lie-subalgebras. Perform the con-
tractions over those. Do you know the Lie-algebras so obtained? What is their
difference? What Lie-algebra is obtained if you perform these contractions one
after the other? Does the result depend on the order? At what Lie-algebras do
you arrive at if after the contractionen over either U1 or U2 you perform the
contraction over U3 := span{Da, T0 : a = 1, 2, 3}. Again: do you know these
Lie-algebras? What is their difference?

Problem 5

This Problem is directly connected with Problem 2 and tries to convey the conceptually
important idea of what it takes to define “position observables” in special-relativistic
theories.

Let Lie(V ⋊ O(V,η)) be faithfully represented on the (infinite-dimensional) Lie-
algebra C∞(P,R) of real-valued smooth functions on the phase-space P of some me-
chanical system. The Lie-product on C∞(P,R) is the Poisson bracket. Hence we have
an embedding Lie(V ⋊O(V,η)) ↩→ C∞(P,R). Under this embedding the (Pa,Mab)
become real-valued functions on P obeying (6) if [·, ·] is replaced by the Poisson-
bracket {·, ·}. The values of these phase-space functions are the conserved quantities
corresponding to the group of translations and Lorentz-transformations, i.e., energy-
momentum and centre-of-mass and angular-momentum. Unlike in the original Lie-
algebra Lie(V⋊O(V,η)), there is an additional associative product in C∞(P,R) given
by pointwise multiplication. this allows us to form polynomials and broken rational
functions from the phase-space functions (Pa,Mab).

An “inertial system” (or “state of motion”) is characterised by n ∈ V with η(n,n) =
1. We now consider the phase-space functions defined by (7), which depend on X ∈ V ,
and ask for which values of X the four functions M̄abn

b have zeros (i.e. the corre-
sponding conserved quantities vanish):

M̄abn
b = 0 . (15)

Corresponding to (7b) this leads to the condition
"
(Pcn

c)ηab − Panb

#
Xb = Mabn

b . (16)

This is to be read as four conditions on the four real numbers Xb for each phase-space
point. In what follows we restrict to those points on phase space where Pcn

c ∕= 0

(which is the energy of the system in the inertial frame characterised by n).
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Show that the general solution of (16) is then given by the one-parameter family (pa-
rameter λ):

Xa(λ) =
1

Pcnc

"
Paλ+Mabn

b
#
. (17)

The map λ $→ X(λ) defines a wordline in spacetime which is sometimes called the
“central-line” or the worldline of the “centre-of-mass”. It is timelike if and only if P is
timelike, i.e. PaPbηab > 0.

By construction, this worldline defines the set of all points in Minkowski space (here
identified with V) at which the conserved quantity associated with boost symmetry
vanishes. This worldline not only depends on the state of the system but also on the
choice of the inertial system n. The latter dependence is a new feature in Special Rel-
ativity. It does not exist in classical mechanics (invariant under the inhomogeneous
Galilei group), where the definitions of “centre-of-mass” with respect to inertial sys-
tems lead to a unique worldline in spacetime.

Hint: In order to derive (17) use that the map Abbildung Π : V → V with Components
Πa
b = δab −

Panb
Pcnc is just the projection of V onto n⊥ := {v ∈ V : η(v, n) = 0} parallel

to P ∈ V (hence not die orthogonalprojection onto n⊥, which would be parallel to n).

With respect to the solution worldline X(λ) we can form M̄ab. Show that it is inde-
pendent of λ. This M̄ab is generally called the spin tensor. It is a phase-space function
with values in V∗ ∧ V∗) which depends on the inertial system (i.e. on n). We have

Sab = Mab +
(PaMbc − PbMac)n

c

ncPc
(18)

Calculate the Poisson-brackets of the four phase-space functions Xa(λ) defined
through (17) amongst themselves and with Pa and Mab. To what extent would you
say that the Xa correspond to space-time “position observables”?
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