Exercises for the Lecture on

Theory of Fundamental Interactions (summer 2022)

by DOMENICO GIULINI

Sheet 5

Problem 1

Consider the defining representation $D^{(1)}$ of SO(3) on \mathbb{R}^3 . Take its tensor product $D^{(1)} \otimes D^{(1)}$ on $\mathbb{R}^3 \otimes \mathbb{R}^3$ and show that the antisymmetric tensors, the symmetric-traceless tensors, and the tensors proportional to the euclidean metric (so-called "pure trace") form invariant subspaces of dimensions 3, 5, and 1, respectively. Are these subspaces irreducible?

Problem 2

Let $D^{(1)}$: SO(3) $\times V \to V$ be the defining representation of the rotation group on three-dimensional euclidean space $V = \mathbb{R}^3$. Let $V^{n\otimes} = V \otimes \cdots \otimes V$ be the n-fold tensor product, $V_{(s)}^{n\otimes}$ its total symmetrisation, and $V_{(s,t)}^{n\otimes}$ be the subspace in the latter of traceless tensors (the trace being defined via the euclidean inner product).

1. Prove that

$$\dim(\mathbf{V}_{(s)}^{\mathfrak{n}\otimes}) = \frac{(n+2)!}{n!\,2} \quad \text{and} \quad \dim(\mathbf{V}_{(s,t)}^{\mathfrak{n}\otimes}) = 2n+1 \tag{1}$$

2. Prove that the n-fold tensor product of the defining representation $D^{(1)}$ acts irreducibly on $V_{(s,t)}^{n\otimes}$. [Hint: First show that it linearly maps traceless symmetric tensors into traceless symmetric tensors. Then show that it is a representation of weight n and conclude irreducibility from the argument in the lecture.]

Problem 3

We consider $C^{\infty}(S^2, \mathbb{C})$, that is, the infinite-dimensional complex vector space of infinitely differentiable complex-valued functions on the 2-sphere $S^2 := \{\vec{x} \in \mathbb{R}^3 \mid ||\vec{x}| = 1\}$. The rotation group SO(3) acts on S^2 via the defining representation on \mathbb{R}^3 . A rotation about the oriented axis \vec{n} , where $||\vec{n}|| = 1$, and angle α is given by

$$D(\vec{n}, \alpha)\vec{x} = \vec{x}_{\parallel} + \cos(\alpha)\vec{x}_{\perp} + \sin(\alpha)\vec{n} \times \vec{x}_{\perp}$$

= $\vec{x} + (\cos(\alpha) - 1)\vec{x}_{\perp} + \sin(\alpha)\vec{n} \times \vec{x}$ (2)

This action defines a linear representation of SO(3) on $C^{\infty}(S^2, \mathbb{C})$ via

$$T(\vec{n},\alpha)\psi = \psi \circ D^{-1}(\vec{n},\alpha) = \psi \circ D(\vec{n},-\alpha).$$
(3)

The corresponding representation \dot{T} of Lie(SO(3)) on $C^{\infty}(S^2, \mathbb{C})$ is obtained by considering curves $D(\vec{n}(s), \alpha(s))$ with $\vec{n}(0) = \vec{n}$, $\alpha(0) = 0$ and $\dot{\alpha}(0) = 1$.

1. Show that $\dot{\mathsf{T}}$ is given by

$$\dot{\mathsf{T}}_{\vec{\mathsf{n}}}(\psi) = -\vec{\mathsf{n}} \cdot (\vec{\mathsf{x}} \times \vec{\nabla}\psi) \tag{4}$$

and check that

$$\begin{bmatrix} \dot{\mathsf{T}}_{\vec{\mathsf{n}}}, \dot{\mathsf{T}}_{\vec{\mathsf{m}}} \end{bmatrix} = \dot{\mathsf{T}}_{\vec{\mathsf{n}} \times \vec{\mathsf{m}}} \,. \tag{5}$$

Here \vec{n} and \vec{m} are considered as elements of Lie(SO(3))) with $\dot{D}(\vec{n})\vec{x} = \vec{n} \times \vec{x}$.

2. Let $\{\vec{e}_{a} \mid a = 1, 2, 3\}$ be an orthonormal Basis of \mathbb{R}^{3} . We define (compare Lecture)

$$J_a := i \dot{T}_{\vec{e}_a} \tag{6}$$

so that $[J_a, J_b] = i\epsilon_{ab}{}^c J_c$. As in the Lecture we form $J_{\pm} := J_1 \pm iJ_2$ and $J^2 := J_1^2 + J_2^2 + J_3^2$. Instead of \vec{x} with $\|\vec{x}\| = 1$ we introduce spherical polar coordinates according to

$$x = \sin \theta \cos \varphi, \quad y = \sin \theta \sin \varphi, \quad z = \cos \theta.$$
 (7)

Show that

$$\mathbf{J}_{\pm} = e^{\pm i\varphi} \left(\pm \frac{\partial}{\partial \theta} + i \cot \theta \frac{\partial}{\partial \varphi} \right) , \qquad (8a)$$

$$J_3 = -i \frac{\partial}{\partial \varphi}, \qquad (8b)$$

$$J^{2} = -\left(\frac{1}{\sin\theta}\frac{\partial}{\partial\theta}\sin\theta\frac{\partial}{\partial\theta} + \frac{1}{\sin^{2}\theta}\frac{\partial^{2}}{\partial\phi^{2}}\right).$$
 (8c)

- 3. Determine for each integer $\ell \in \mathbb{N}$ the irreducible subspace $V_{\ell} \subset C^{\infty}(S^2, \mathbb{C})$ by first solving the differential equation $J_+\psi_{\ell} = 0$ and then applying successively powers of J_- . The functions so obtained should be normalised in the L²-norm on S² with respect to the measure $d\mu = \sin \theta \, d\theta \wedge d\phi$. Show that this leads to the $2\ell + 1$ spherical harmonics $Y_{\ell m}$ for fixed ℓ and $-\ell \leq m \leq \ell$. These span the irreducible subspace of weight ℓ .
- 4. We know from general theory that $J^2 Y_{\ell m} = \ell(\ell + 1)Y_{\ell m}$. Check this using (8c). (It is sufficient to give the explicit formulae for the $Y_{\ell m}$ for $\ell = 1$.)

Problem 4

Let V be a two-dimensional complex vector space and $\bigvee^n V^* := \bigotimes_{(s)}^n V^*$ the n-fold totally symmetric tensor product of its dual space V^{*}.

Show that for any $\Theta \in \bigvee^n V^*$ there exist n elements $\varphi^{(1)}, \dots, \varphi^{(n)} \in V^*$, so that $\Theta = \varphi^{(1)} \vee \dots \vee \varphi^{(n)}$. Here \vee denotes the symmetric tensor product. Further show that the $\varphi^{(k)}$ are uniquely determined up to permutation and rescaling $\varphi^{(k)} \mapsto \lambda^{(k)} \varphi^{(k)}$, where the $\lambda^{(k)} \in \mathbb{C}$ obey $\lambda^{(1)} \cdot \lambda^{(2)} \cdots \lambda^{(n)} = 1$. The $\varphi^{(k)}$ are called the *principal spinors* of Θ .

Hint. You may assume the following Lemma: Let $T \in \bigvee^n V^*$; then T = 0 if and only if $T(v, \dots, v) = 0$ for all $v \in V$. (If you wish to prove the Lemma, consider $v = u + \lambda w$ for $\lambda \in \mathbb{C}$ and expand $T(v, \dots, v) = 0$ in powers of λ . Conclude that, in particular, the coefficient of the linear term $\propto \lambda$ must vanish. This is true for any w and any u. Now proceed by iterating the argument for the remaining n - 1 slots containing u....) Now, given the Lemma, it suffices to show that $\varphi^{(1)}, \dots, \varphi^{(n)} \in V^*$ exist such that $(\Theta - \varphi^{(1)} \vee \dots \vee \varphi^{(1)})(v, v, \dots, v) = 0$ for all $v \in V$. Expressing this in components (with respect to dual bases in V and V^* and their tensor products), this means

$$\left(\Theta_{A_1\cdots A_n} - \Phi_{(A_1}^{(1)}\cdots \Phi_{A_n}^{(n)}\right)\nu^{A_1}\cdots \nu^{A_n} = 0$$
(9)

for all 2-tupel $(v^0, v^1) \in \mathbb{C}^2$. Without loss of generality we may assume $v^0 = 1$ (why?). Setting $v^1 =: z \in \mathbb{C}$ we get $\Theta(v, \dots, v) = \Theta_{00\dots0} + z \, n \Theta_{10\dots0} + \dots + z^n \Theta_{1\dots1}$. Using the fundamental theorem of algebra, conclude that there exist n complex tuples $(\Phi_0^{(1)}, \Phi_1^{(1)}), \dots, (\Phi_0^{(n)}, \Phi_1^{(n)})$ so that this polynomial in z equals $(\Phi_0^{(1)} + z \Phi_1^{(1)}) \cdot (\Phi_0^{(2)} + z \Phi_1^{(2)}) \cdots (\Phi_0^{(n)} + z \Phi_1^{(n)})$.

Problem 5

We recall that a *real structure* C on a complex vector space V is an antilinear involution (called "complex conjugation"); that is, an antilinear map $C : V \rightarrow V$ satisfying $C \circ C = id_V$. A vector $v \in C$ is called *real* with respect to C if C(v) = v.

- 1. Show that a real structure is equivalent to a *linear* isomorphism $K : V \to \overline{V}$ satisfying $j^{-1} \circ K \circ j^{-1} = K^{-1}$. Here j is the natural anti-isomorphism $j : V \to \overline{V}$ defined in the Lecture.
- 2. Let V be a complex vector space and \overline{V} its complex-conjugate vector space. Show that $V \otimes \overline{V}$ and $V \oplus \overline{V}$ carry *natural* (i.e. without specification of further structural elements) *real strucure*. Characterise the real vectors in each case.
- Suppose now that V has a non-degenerate bilinear form ε. Show that now V⊕V
 ^{*} has a real structure (that now depends on ε). Characterise the real vectors.

Note: If V is the 2-dimensional complex vector space carrying the defining representation of SL(2, \mathbb{C}), then elements in V are called *Weyl-Spinors*, elements in V $\oplus \overline{V}^*$ *Dirac-Spinors*, and the real elements in V $\oplus \overline{V}^*$ *Majorana-Spinors* (after Ettore Majorana 1906 - ????, who mysteriously disappeared in 1938).

Problem 6

From the Lecture we recall the following: Let L be a real Lie-algebra and $\mathbb{C} \otimes_{\mathbb{R}} L$, which is a real Lie-algebra of twice the dimension as L. It has a natural complex structure defined by $J_2(z \otimes X) = iz \otimes X$ (and real-linear extension). The reason why we put the index 2 on J_2 will become clear below. Hence we can make $\mathbb{C} \otimes L$ into a complex Lie-algebra, which we now call $(\mathbb{C} \otimes L)^{\mathbb{C}}$, by defining \mathbb{C} -multiplication with a + ib via $(a + ib)(z \otimes X) := [(a + ib)z] \otimes X$. The dimension of $(\mathbb{C} \otimes L)^{\mathbb{C}}$ over \mathbb{C} equals the dimension of L over \mathbb{R} .

Now assume that L already comes equipped with a complex structure J, i.e. a (real-)linear map J : L \rightarrow L satisfying J \circ J = $-id_L$ and J([X, Y]) = [J(X), Y] = [X, J(Y)]. Let L^C denote the complex Lie-algebra obtained from L by defining complex multiplication accordingly by (a + ib)X := aX + bJ(X) for all $a, b \in \mathbb{R}$ and all $X \in L$. Note that the complex dimension of L^C equals half the real dimension of L. (The origin of the complex structure J of L is not important here. It may stem from L having the form $\mathbb{C} \otimes L'$ for some real Lie-algebra L', but we shall not need such an assumption.) Prove that

$$(\mathbb{C} \otimes L)^{\mathbb{C}} = L^{\mathbb{C}} \oplus \bar{L}^{\mathbb{C}} .$$
⁽¹⁰⁾

Here $\overline{L}_{\mathbb{C}}$ denotes the complex-conjugate Lie-algebra to $L_{\mathbb{C}}$, which is based on the complex-conjugate vector space on which the multiplication by \mathbb{C} is defined by composition with complex-conjugation. Note that (10) means says $(\mathbb{C} \otimes L)^{\mathbb{C}}$ decomposes into two ideals of equal dimension if L has a complex structure.

Hint: Forst show that the \mathbb{R} -linear map J on L extends to the \mathbb{R} -linear map $J_1 := id \otimes J$ on $\mathbb{C} \otimes L$ and then also to a \mathbb{C} -linear map - also denoted by J_1 - to ($\mathbb{C} \otimes L$) satisfying $J_1([X,Y]) = [J_1(X), Y] = [X, J_1(Y)]$ and $J_1 \circ J_1 = -id_{(\mathbb{C} \otimes L)^{\mathbb{C}}}$. Next consider on $(\mathbb{C} \otimes L)^{\mathbb{C}}$ the \mathbb{C} -linear maps

$$\mathsf{P}_{\pm} := \frac{1}{2} \left(\mathsf{id}_{(\mathbb{C} \otimes \mathsf{L})^{\mathbb{C}}} \mp \mathsf{i} \mathsf{J}_1 \right), \tag{11}$$

and show that they are projectors, i.e. satisfy $P_{\pm} \circ P_{\pm} = P_{\pm}$, $P_{\pm} \circ P_{\mp} = 0$, and $P_{+} + P_{-} = id_{(\mathbb{C} \otimes L)^{\mathbb{C}}}$ and also satisfy

$$J_{1} \circ P_{\pm} = P_{\pm} \circ J_{1} = \pm i P_{\pm}, P_{\pm}([X, Y]) = ([P_{\pm}(X), Y]) = [X, P_{\pm}(Y)].$$
(12)

These equations imply that P_{\pm} project onto the eigenspaces of J_1 with eigenvalues $\pm i$ and that these eigenspaces are Lie-subalgebras.

Remark: The result of this exercise explains the result of the Lecture

$$\mathbb{C} \otimes \text{Lie}(\text{SL}(2,\mathbb{C})) \cong [\mathbb{C} \otimes \text{Lie}(\text{SU}(2))] \oplus [\mathbb{C} \otimes \text{Lie}(\text{SU}(2))], \quad (13)$$

i.e. that simplicity gets lost in the process of taking $\mathbb{C} \otimes (\cdots)$, while this is not true in other cases, like, e.g.,

$$\operatorname{Lie}(\operatorname{SL}(2,\mathbb{C})) \cong \mathbb{C} \otimes \operatorname{Lie}(\operatorname{SU}(2)).$$
(14)