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Problem 1

Consider the defining representation D) of SO(3) on R3. Take its tensor product
DM @ DM on R® @ R3 and show that the antisymmetric tensors, the symmetric-
traceless tensors, and the tensors proportional to the euclidean metric (so-called “pure
trace”) form invariant subspaces of dimensions 3, 5, and 1, respectively. Are these
subspaces irreducible?

Problem 2

Let DI : SO(3) x V — V be the defining representation of the rotation group on
three-dimensional euclidean space V = R3. Let V'® = V ® --- ® V be the n-fold
tensor product, V“® its total symmetrisation, and V“® be the subspace in the latter of
traceless tensors (the trace being defined via the euchdean inner product).

1. Prove that

(m+2)!

dim(V(y}) = —

and dim (V) = 2n +1 (1)

2. Prove that the n-fold tensor product of the defining representation D! acts
irreducibly on V(T;%. [Hint: First show that it linearly maps traceless symmetric
tensors into traceless symmetric tensors. Then show that it is a representation of
weight n and conclude irreducibility from the argument in the lecture.]

Problem 3

We consider C*°(S%, C), that is, the infinite-dimensional complex vector space of in-
finitely differentiable complex-valued functions on the 2-sphere S? := {X € R3 | ||X] =
1}. The rotation group SO(3) acts on S? via the defining representation on R3. A
rotation about the oriented axis 1, where ||| = 1, and angle « is given by

D(1i, )X = X| + cos(a) X1+ sin(a) 7 x X 2

=X+ (cos(oc) —1)7‘(’l+sin(oc)ﬁ’><x
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This action defines a linear representation of SO(3) on C*®(S?, C) via
T(f, o)) =P oD (A, &) = o D(H, —a). 3)

The corresponding representation T of Lie(SO(3)) on C*°(S?%, C) is obtained by con-
sidering curves D(ﬁ(s), oc(s)) with (0) = 1, &(0) = 0 and &(0) = 1.

1. Show that T is given by
Ta() = —i- (X x V) 4)

and check that
[T, Ti] = Trserm - 5

Here 1 and 1 are considered as elements of Lie (SO (3) )) with D(1)X = L X X.

2. Let {€, | a = 1,2,3} be an orthonormal Basis of R3. We define (compare

Lecture)

Ja:=1Tg, (6)
so that [Jq, Jo] = i€, Jc). As in the Lecture we form J+ = J; £ iJ, and
J2 := J3 + J3 + J3. Instead of X with ||X|| = 1 we introduce spherical polar
coordinates according to

x =sinBcos@, yY=sinOsingp, z=cosH. @)
Show that
- o . 0
Jo = eti® (i% +1i coteﬁ) , (8a)
0
- —i— 8b
]3 1 a(() ) (8b)
1 9 d 1 9?
2 .
= | —==sin0—=+——-— . 8
J <sin6 26 °"%30 T sinZe 6(p2> (8c)

3. Determine for each integer { € N the irreducible subspace Vy C C*®(S?, C) by
first solving the differential equation J;1; = O and then applying successively
powers of J_. The functions so obtained should be normalised in the L>-norm
on S? with respect to the measure di = sin © d® /A d¢. Show that this leads to
the 2¢ + 1 spherical harmonics Y, for fixed £ and —¢ < m < {. These span the
irreducible subspace of weight £.

4. We know from general theory that J2Yyn = £(£ 4 1)Ym. Check this using (8c).
(It is sufficient to give the explicit formulae for the Yy, for £ = 1.)
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Problem 4

Let V be a two-dimensional complex vector space and \/™ V* := ®?S)V* the n-fold
totally symmetric tensor product of its dual space V*.

Show that for any © € \/™V* there exist n elements M - ™ e V*, so that
© = ¢!V V...V ¢, Here \V denotes the symmetric tensor product. Further show
that the ¢(*) are uniquely determined up to permutation and rescaling %) — A p(¥)|
where the ) € C obey A1) - A2 ... AN = 1. The ¢¥ are called the principal
spinors of ©.

Hint. You may assume the following Lemma: Let T € \/"V*; then T = 0 if and
only if T(v,---,v) = 0 forall v € V. (If you wish to prove the Lemma, consider
v =u+ Aw for A € C and expand T(v,---,v) = 0 in powers of A. Conclude that,
in particular, the coefficient of the linear term oc A must vanish. This is true for any
w and any u. Now proceed by iterating the argument for the remaining n — 1 slots
containing u....) Now, given the Lemma, it suffices to show that M, pM e v
exist such that (@ — ¢!V V-V V) (v,v,-- ;v) =0 forallv € V. Expressing this
in components (with respect to dual bases in V and V* and their tensor products), this
means

(®A1“'An _ dD&)] ...¢le)) VAT LA — )

for all 2-tupel (V°,v') € C2. Without loss of generality we may assume V* = 1
(why?). Settingv! =1z € Cwe getO(v, - -- ,v) = Op...0+2NO1g..0+ - +2"O1...1.
Using the fundamental theorem of algebra, conclude that there exist n complex tuples
(q>é”, ng”), ceey ((b(()n), d)%n)) so that this polynomial in z equals (d)(()” + zd)g”) .

(057 +2077) - (g +z07).

Problem 5

We recall that a real structure C on a complex vector space V is an antilinear involution
(called “complex conjugation”); that is, an antilinear map C : V — V satisfying
Co C =1idy. A vector v € C is called real with respect to C if C(v) = v.

1. Show that a real structure is equivalent to a linear isomorphism K : V — V
satisfying j = o Koj~! = K. Here j is the natural anti-isomorphismj: V — V
defined in the Lecture.

2. Let V be a complex vector space and V its complex-conjugate vector space.
Show that V ® V and V @ V carry natural (i.e. without specification of further
structural elements) real strucure. Characterise the real vectors in each case.

3. Suppose now that V has a non-degenerate bilinear form ¢. Show that now V@ V*
has a real structure (that now depends on ¢). Characterise the real vectors.

Note: If V is the 2-dimensional complex vector space carrying the defining represen-
tation of SL(2,C), then elements in V are called Weyl-Spinors, elements in V @ V*
Dirac-Spinors, and the real elements in V & V* Majorana-Spinors (after Ettore Majo-
rana 1906 - 777?, who mysteriously disappeared in 1938).
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Problem 6

From the Lecture we recall the following: Let L be a real Lie-algebra and C ®p L,
which is a real Lie-algebra of twice the dimension as L. It has a natural complex
structure defined by J,(z ® X) = iz ® X (and real-linear extension). The reason why
we put the index 2 on ], will become clear below. Hence we can make C ® L into a
complex Lie-algebra, which we now call (C ® L)€, by defining C-multiplication with
a+1ib via (a +ib)(z ® X) := [(a + ib)z] ® X. The dimension of (C ® L)€ over C
equals the dimension of L over R.

Now assume that L already comes equipped with a complex structure J, i.e. a (real-
Jlinear map J : L — L satisfying ] o ] = —id¢ and J([X, Y]) = [J(X), Y] = [X, J(Y)].
Let LC denote the complex Lie-algebra obtained from L by defining complex multipli-
cation accordingly by (a + ib)X := aX + bJ(X) for all a,b € R and all X € L. Note
that the complex dimension of L equals half the real dimension of L. (The origin of
the complex structure ] of L is not important here. It may stem from L having the form
C® L' for some real Lie-algebra L, but we shall not need such an assumption.) Prove
that

(CoL)=LCqIC. (10)

Here L¢ denotes the complex-conjugate Lie-algebra to L, which is based on the
complex-conjugate vector space on which the multiplication by C is defined by com-
position with complex-conjugation. Note that (10) means says (C ® L)© decomposes
into two ideals of equal dimension if L has a complex structure.

Hint: Forst show that the R-linear map ] on L extends to the R-linear map J1 :=1d ®J
on C ® L and then also to a C-linear map - also denoted by J; - to (C ® L) satisfying
J1(X, YD) = [h(X),Y] = X, J1(Y)l and Jy o J; = —id(cgr)c. Next consider on
(C ® L)€ the C-linear maps

P = %(id((c@uc - i]1> , (11)

and show that they are projectors, i.e. satisfy P4 o P+ = P4, P o P- = 0, and
P4 4+ P_ = id(¢g)c and also satisfy
JioPr =Pio]; =+iPy,

(12)
P=(IX,Y]) = ([P+(X), Y]) = [X, PL(Y)].

These equations imply that P4 project onto the eigenspaces of J; with eigenvalues i
and that these eigenspaces are Lie-subalgebras.

Remark: The result of this exercise explains the result of the Lecture
C ® Lie(SL(2,C)) = [C ® Lie(SU(2))] @ [C ® Lie(SU(2))], (13)

i.e. that simplicity gets lost in the process of taking C & (- - - ), while this is not true in
other cases, like, e.g.,

Lie(SL(2,C)) = C ® Lie(SU(2)). (14)
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