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Problem 1

Consider the defining representation D(1) of SO(3) on R3. Take its tensor product
D(1) ⊗ D(1) on R3 ⊗ R3 and show that the antisymmetric tensors, the symmetric-
traceless tensors, and the tensors proportional to the euclidean metric (so-called “pure
trace”) form invariant subspaces of dimensions 3, 5, and 1, respectively. Are these
subspaces irreducible?

Problem 2

Let D(1) : SO(3) × V → V be the defining representation of the rotation group on
three-dimensional euclidean space V = R3. Let Vn⊗ = V ⊗ · · · ⊗ V be the n-fold
tensor product, Vn⊗

(s) its total symmetrisation, and Vn⊗
(s,t) be the subspace in the latter of

traceless tensors (the trace being defined via the euclidean inner product).

1. Prove that

dim
!
Vn⊗
(s)

"
=

(n+ 2)!

n! 2
and dim

!
Vn⊗
(s,t

"
= 2n+ 1 (1)

2. Prove that the n-fold tensor product of the defining representation D(1) acts
irreducibly on Vn⊗

(s,t). [Hint: First show that it linearly maps traceless symmetric
tensors into traceless symmetric tensors. Then show that it is a representation of
weight n and conclude irreducibility from the argument in the lecture.]

Problem 3

We consider C∞(S2,C), that is, the infinite-dimensional complex vector space of in-
finitely differentiable complex-valued functions on the 2-sphere S2 := {!x ∈ R3 | ‖!x| =
1}. The rotation group SO(3) acts on S2 via the defining representation on R3. A
rotation about the oriented axis !n, where ‖!n‖ = 1, and angle α is given by

D(!n,α)!x = !x‖ + cos(α)!x⊥ + sin(α) !n× !x⊥

= !x+
!
cos(α)− 1

"
!x⊥ + sin(α) !n× !x

(2)
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This action defines a linear representation of SO(3) on C∞(S2,C) via

T(!n,α)ψ = ψ ◦D−1(!n,α) = ψ ◦D(!n,−α) . (3)

The corresponding representation Ṫ of Lie(SO(3)) on C∞(S2,C) is obtained by con-
sidering curves D

!
!n(s),α(s)

"
with !n(0) = !n, α(0) = 0 and α̇(0) = 1.

1. Show that Ṫ is given by

Ṫ!n(ψ) = −!n · (!x× !∇ψ) (4)

and check that #
Ṫ!n, Ṫ!m

$
= Ṫ!n×!m . (5)

Here !n and !m are considered as elements of Lie
!
SO(3))

"
with Ḋ(!n)!x = !n×!x.

2. Let {!ea | a = 1, 2, 3} be an orthonormal Basis of R3. We define (compare
Lecture)

Ja := i Ṫ!ea (6)

so that [Ja, Jb] = iε c
ab Jc). As in the Lecture we form J± := J1 ± iJ2 and

J2 := J21 + J22 + J23. Instead of !x with ‖!x‖ = 1 we introduce spherical polar
coordinates according to

x = sin θ cosϕ , y = sin θ sinϕ , z = cos θ . (7)

Show that

J± = e±iϕ

%
± ∂

∂θ
+ i cot θ

∂

∂ϕ

&
, (8a)

J3 = −i
∂

∂ϕ
, (8b)

J2 = −

%
1

sin θ
∂

∂θ
sin θ

∂

∂θ
+

1

sin2 θ
∂2

∂ϕ2

&
. (8c)

3. Determine for each integer ℓ ∈ N the irreducible subspace Vℓ ⊂ C∞(S2,C) by
first solving the differential equation J+ψℓ = 0 and then applying successively
powers of J−. The functions so obtained should be normalised in the L2-norm
on S2 with respect to the measure dµ = sin θdθ∧ dϕ. Show that this leads to
the 2ℓ+ 1 spherical harmonics Yℓm for fixed ℓ and −ℓ ≤ m ≤ ℓ. These span the
irreducible subspace of weight ℓ.

4. We know from general theory that J2Yℓm = ℓ(ℓ+ 1)Yℓm. Check this using (8c).
(It is sufficient to give the explicit formulae for the Yℓm for ℓ = 1.)
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Problem 4

Let V be a two-dimensional complex vector space and
'n V∗ := ⊗n

(s)V
∗ the n-fold

totally symmetric tensor product of its dual space V∗.

Show that for any Θ ∈
'nV∗ there exist n elements φ(1), · · · ,φ(n) ∈ V∗, so that

Θ = φ(1) ∨ · · · ∨ φ(n). Here ∨ denotes the symmetric tensor product. Further show
that the φ(k) are uniquely determined up to permutation and rescaling φ(k) )→ λ(k)φ(k),
where the λ(k) ∈ C obey λ(1) · λ(2) · · · λ(n) = 1. The φ(k) are called the principal
spinors of Θ.

Hint. You may assume the following Lemma: Let T ∈
'nV∗; then T = 0 if and

only if T(v, · · · , v) = 0 for all v ∈ V . (If you wish to prove the Lemma, consider
v = u + λw for λ ∈ C and expand T(v, · · · , v) = 0 in powers of λ. Conclude that,
in particular, the coefficient of the linear term ∝ λ must vanish. This is true for any
w and any u. Now proceed by iterating the argument for the remaining n − 1 slots
containing u....) Now, given the Lemma, it suffices to show that φ(1), · · · ,φ(n) ∈ V∗

exist such that
!
Θ−φ(1)∨ · · ·∨φ(1)

"
(v, v, · · · , v) = 0 for all v ∈ V . Expressing this

in components (with respect to dual bases in V and V∗ and their tensor products), this
means (

ΘA1···An − φ
(1)
(A1

· · ·φ(n)
An)

)
vA1 · · · vAn = 0 (9)

for all 2-tupel (v0, v1) ∈ C2. Without loss of generality we may assume v0 = 1

(why?). Setting v1 =: z ∈ C we get Θ(v, · · · , v) = Θ00···0+znΘ10···0+ · · ·+znΘ1···1.
Using the fundamental theorem of algebra, conclude that there exist n complex tuples!
φ
(1)
0 ,φ

(1)
1

"
, · · · ,

!
φ
(n)
0 ,φ

(n)
1

"
so that this polynomial in z equals

!
φ
(1)
0 + zφ

(1)
1

"
·

!
φ
(2)
0 + zφ

(2)
1

"
· · ·

!
φ
(n)
0 + zφ

(n)
1

"
.

Problem 5

We recall that a real structure C on a complex vector space V is an antilinear involution
(called “complex conjugation”); that is, an antilinear map C : V → V satisfying
C ◦ C = idV . A vector v ∈ C is called real with respect to C if C(v) = v.

1. Show that a real structure is equivalent to a linear isomorphism K : V → V̄

satisfying j−1 ◦K◦ j−1 = K−1. Here j is the natural anti-isomorphism j : V → V̄

defined in the Lecture.

2. Let V be a complex vector space and V̄ its complex-conjugate vector space.
Show that V ⊗ V̄ and V ⊕ V̄ carry natural (i.e. without specification of further
structural elements) real strucure. Characterise the real vectors in each case.

3. Suppose now that V has a non-degenerate bilinear form ε. Show that now V⊕V̄∗

has a real structure (that now depends on ε). Characterise the real vectors.

Note: If V is the 2-dimensional complex vector space carrying the defining represen-
tation of SL(2,C), then elements in V are called Weyl-Spinors, elements in V ⊕ V̄∗

Dirac-Spinors, and the real elements in V ⊕ V̄∗ Majorana-Spinors (after Ettore Majo-
rana 1906 - ????, who mysteriously disappeared in 1938).
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Problem 6

From the Lecture we recall the following: Let L be a real Lie-algebra and C ⊗R L,
which is a real Lie-algebra of twice the dimension as L. It has a natural complex
structure defined by J2(z ⊗ X) = iz ⊗ X (and real-linear extension). The reason why
we put the index 2 on J2 will become clear below. Hence we can make C ⊗ L into a
complex Lie-algebra, which we now call (C⊗ L)C, by defining C-multiplication with
a + ib via (a + ib)(z ⊗ X) := [(a + ib)z] ⊗ X. The dimension of (C ⊗ L)C over C
equals the dimension of L over R.

Now assume that L already comes equipped with a complex structure J, i.e. a (real-
)linear map J : L → L satisfying J ◦ J = −idL and J([X, Y]) = [J(X), Y] = [X, J(Y)].
Let LC denote the complex Lie-algebra obtained from L by defining complex multipli-
cation accordingly by (a+ ib)X := aX+ bJ(X) for all a, b ∈ R and all X ∈ L. Note
that the complex dimension of LC equals half the real dimension of L. (The origin of
the complex structure J of L is not important here. It may stem from L having the form
C⊗L ′ for some real Lie-algebra L ′, but we shall not need such an assumption.) Prove
that

(C⊗ L)C = LC ⊕ L̄C . (10)

Here L̄C denotes the complex-conjugate Lie-algebra to LC, which is based on the
complex-conjugate vector space on which the multiplication by C is defined by com-
position with complex-conjugation. Note that (10) means says (C⊗ L)C decomposes
into two ideals of equal dimension if L has a complex structure.

Hint: Forst show that the R-linear map J on L extends to the R-linear map J1 := id⊗ J

on C ⊗ L and then also to a C-linear map - also denoted by J1 - to (C ⊗ L) satisfying
J1([X, Y]) = [J1(X), Y] = [X, J1(Y)] and J1 ◦ J1 = −id(C⊗L)C . Next consider on
(C⊗ L)C the C-linear maps

P± := 1
2

(
id(C⊗L)C ∓ i J1

)
, (11)

and show that they are projectors, i.e. satisfy P± ◦ P± = P±, P± ◦ P∓ = 0, and
P+ + P− = id(C⊗L)C and also satisfy

J1 ◦ P± = P± ◦ J1 = ± i P± ,

P±([X, Y]) = ([P±(X), Y]) = [X, P±(Y)] .
(12)

These equations imply that P± project onto the eigenspaces of J1 with eigenvalues ±i

and that these eigenspaces are Lie-subalgebras.

Remark: The result of this exercise explains the result of the Lecture

C⊗ Lie(SL(2,C)) ∼= [C⊗ Lie(SU(2))]⊕ [C⊗ Lie(SU(2))] , (13)

i.e. that simplicity gets lost in the process of taking C⊗ (· · · ), while this is not true in
other cases, like, e.g.,

Lie(SL(2,C)) ∼= C⊗ Lie(SU(2)) . (14)
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