Exercises for the Lecture on
 Theory of Fundamental Interactions (summer 2022)

by Domenico Giulini

Sheet 5

Problem 1

Consider the defining representation $\mathrm{D}^{(1)}$ of $\mathrm{SO}(3)$ on \mathbb{R}^{3}. Take its tensor product $D^{(1)} \otimes D^{(1)}$ on $\mathbb{R}^{3} \otimes \mathbb{R}^{3}$ and show that the antisymmetric tensors, the symmetrictraceless tensors, and the tensors proportional to the euclidean metric (so-called "pure trace") form invariant subspaces of dimensions 3, 5, and 1, respectively. Are these subspaces irreducible?

Problem 2

Let $\mathrm{D}^{(1)}: \mathrm{SO}(3) \times \mathrm{V} \rightarrow \mathrm{V}$ be the defining representation of the rotation group on three-dimensional euclidean space $\mathrm{V}=\mathbb{R}^{3}$. Let $\mathrm{V}^{\mathrm{n} \otimes}=\mathrm{V} \otimes \cdots \otimes \mathrm{V}$ be the n -fold tensor product, $\mathrm{V}_{(\mathrm{s})}^{\mathrm{n} \otimes}$ its total symmetrisation, and $\mathrm{V}_{(\mathrm{s}, \mathrm{t})}^{\mathrm{n} \otimes}$ be the subspace in the latter of traceless tensors (the trace being defined via the euclidean inner product).

1. Prove that

$$
\begin{equation*}
\operatorname{dim}\left(V_{(s)}^{n \otimes}\right)=\frac{(n+2)!}{n!2} \quad \text { and } \quad \operatorname{dim}\left(V_{(s, t}^{n \otimes}\right)=2 n+1 \tag{1}
\end{equation*}
$$

2. Prove that the n-fold tensor product of the defining representation $D^{(1)}$ acts irreducibly on $V_{(s, t)}^{n \otimes}$. [Hint: First show that it linearly maps traceless symmetric tensors into traceless symmetric tensors. Then show that it is a representation of weight n and conclude irreducibility from the argument in the lecture.]

Problem 3

We consider $C^{\infty}\left(S^{2}, \mathbb{C}\right)$, that is, the infinite-dimensional complex vector space of infinitely differentiable complex-valued functions on the 2 -sphere $S^{2}:=\left\{\vec{x} \in \mathbb{R}^{3}|\| \vec{x}|=\right.$ $1\}$. The rotation group $S O(3)$ acts on S^{2} via the defining representation on \mathbb{R}^{3}. A rotation about the oriented axis \vec{n}, where $\|\vec{n}\|=1$, and angle α is given by

$$
\begin{align*}
\mathrm{D}(\vec{n}, \alpha) \vec{x} & =\vec{x}_{\|}+\cos (\alpha) \vec{x}_{\perp}+\sin (\alpha) \vec{n} \times \vec{x}_{\perp} \tag{2}\\
& =\vec{x}+(\cos (\alpha)-1) \vec{x}_{\perp}+\sin (\alpha) \vec{n} \times \vec{x}
\end{align*}
$$

This action defines a linear representation of $\mathrm{SO}(3)$ on $\mathrm{C}^{\infty}\left(\mathrm{S}^{2}, \mathbb{C}\right)$ via

$$
\begin{equation*}
T(\vec{n}, \alpha) \psi=\psi \circ D^{-1}(\vec{n}, \alpha)=\psi \circ D(\vec{n},-\alpha) . \tag{3}
\end{equation*}
$$

The corresponding representation \dagger of $\operatorname{Lie}(\mathrm{SO}(3))$ on $\mathrm{C}^{\infty}\left(\mathrm{S}^{2}, \mathbb{C}\right)$ is obtained by considering curves $D(\vec{n}(s), \alpha(s))$ with $\vec{n}(0)=\vec{n}, \alpha(0)=0$ and $\dot{\alpha}(0)=1$.

1. Show that \dagger is given by

$$
\begin{equation*}
\dot{\mathrm{T}}_{\vec{n}}(\psi)=-\vec{n} \cdot(\vec{x} \times \vec{\nabla} \psi) \tag{4}
\end{equation*}
$$

and check that

$$
\begin{equation*}
\left[\dot{\mathrm{T}}_{\vec{n}}, \dot{\mathrm{~T}}_{\vec{m}}\right]=\dot{\mathrm{T}}_{\vec{n} \times \vec{m}} \tag{5}
\end{equation*}
$$

Here \vec{n} and \vec{m} are considered as elements of $\operatorname{Lie}(S O(3)))$ with $\dot{D}(\vec{n}) \vec{x}=\vec{n} \times \vec{x}$.
2. Let $\left\{\vec{e}_{\mathrm{a}} \mid \mathrm{a}=1,2,3\right\}$ be an orthonormal Basis of \mathbb{R}^{3}. We define (compare Lecture)

$$
\begin{equation*}
\mathrm{J}_{\mathrm{a}}:=\mathrm{i}{\dot{{ }_{\vec{e}}^{a}}} \tag{6}
\end{equation*}
$$

so that $\left.\left[J_{a}, J_{b}\right]=i \varepsilon_{a b}{ }^{c} J_{c}\right)$. As in the Lecture we form $J_{ \pm}:=J_{1} \pm i J_{2}$ and $\mathrm{J}^{2}:=\mathrm{J}_{1}^{2}+\mathrm{J}_{2}^{2}+\mathrm{J}_{3}^{2}$. Instead of \vec{x} with $\|\vec{x}\|=1$ we introduce spherical polar coordinates according to

$$
\begin{equation*}
x=\sin \theta \cos \varphi, \quad y=\sin \theta \sin \varphi, \quad z=\cos \theta . \tag{7}
\end{equation*}
$$

Show that

$$
\begin{align*}
& J_{ \pm}=e^{ \pm i \varphi}\left(\pm \frac{\partial}{\partial \theta}+i \cot \theta \frac{\partial}{\partial \varphi}\right) \tag{8a}\\
& J_{3}=-i \frac{\partial}{\partial \varphi} \tag{8b}\\
& J^{2}=-\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \sin \theta \frac{\partial}{\partial \theta}+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varphi^{2}}\right) \tag{8c}
\end{align*}
$$

3. Determine for each integer $\ell \in \mathbb{N}$ the irreducible subspace $V_{\ell} \subset C^{\infty}\left(S^{2}, \mathbb{C}\right)$ by first solving the differential equation $\mathrm{J}_{+} \psi_{\ell}=0$ and then applying successively powers of J_{-}. The functions so obtained should be normalised in the L^{2}-norm on S^{2} with respect to the measure $d \mu=\sin \theta \mathrm{d} \theta \wedge \mathrm{d} \varphi$. Show that this leads to the $2 \ell+1$ spherical harmonics $Y_{\ell m}$ for fixed ℓ and $-\ell \leq m \leq \ell$. These span the irreducible subspace of weight ℓ.
4. We know from general theory that $J^{2} Y_{\ell m}=\ell(\ell+1) Y_{\ell m}$. Check this using (8c). (It is sufficient to give the explicit formulae for the $Y_{\ell m}$ for $\ell=1$.)

Problem 4

Let V be a two-dimensional complex vector space and $\bigvee^{n} V^{*}:=\otimes_{(s)}^{n} V^{*}$ the n-fold totally symmetric tensor product of its dual space V^{*}.
Show that for any $\Theta \in V^{n} V^{*}$ there exist n elements $\phi^{(1)}, \cdots, \phi^{(n)} \in V^{*}$, so that $\Theta=\phi^{(1)} \vee \cdots \vee \phi^{(n)}$. Here \vee denotes the symmetric tensor product. Further show that the $\phi^{(k)}$ are uniquely determined up to permutation and rescaling $\phi^{(k)} \mapsto \lambda^{(k)} \phi^{(k)}$, where the $\lambda^{(k)} \in \mathbb{C}$ obey $\lambda^{(1)} \cdot \lambda^{(2)} \cdots \lambda^{(n)}=1$. The $\phi^{(k)}$ are called the principal spinors of Θ.
Hint. You may assume the following Lemma: Let $T \in V^{n} V^{*}$; then $T=0$ if and only if $\mathrm{T}(v, \cdots, v)=0$ for all $v \in \mathrm{~V}$. (If you wish to prove the Lemma, consider $v=u+\lambda w$ for $\lambda \in \mathbb{C}$ and expand $\mathrm{T}(v, \cdots, v)=0$ in powers of λ. Conclude that, in particular, the coefficient of the linear term $\propto \lambda$ must vanish. This is true for any w and any u. Now proceed by iterating the argument for the remaining $n-1$ slots containing $u \ldots . .$.$) Now, given the Lemma, it suffices to show that \phi^{(1)}, \ldots, \phi^{(n)} \in \mathrm{V}^{*}$ exist such that $\left(\Theta-\phi^{(1)} \vee \cdots \vee \phi^{(1)}\right)(v, v, \cdots, v)=0$ for all $v \in V$. Expressing this in components (with respect to dual bases in V and V^{*} and their tensor products), this means

$$
\begin{equation*}
\left(\Theta_{A_{1} \cdots A_{n}}-\phi_{\left(\mathcal{A}_{1}\right.}^{(1)} \cdots \phi_{\left.A_{n}\right)}^{(n)}\right) v^{A_{1}} \cdots v^{A_{n}}=0 \tag{9}
\end{equation*}
$$

for all 2-tupel $\left(v^{0}, v^{1}\right) \in \mathbb{C}^{2}$. Without loss of generality we may assume $\nu^{0}=1$ (why?). Setting $v^{1}=: z \in \mathbb{C}$ we get $\Theta(v, \cdots, v)=\Theta_{00 \ldots 0}+z n \Theta_{10 \ldots 0}+\cdots+z^{n} \Theta_{1 \ldots 1}$. Using the fundamental theorem of algebra, conclude that there exist n complex tuples $\left(\phi_{0}^{(1)}, \phi_{1}^{(1)}\right), \cdots,\left(\phi_{0}^{(\mathfrak{n})}, \phi_{1}^{(\mathfrak{n})}\right)$ so that this polynomial in z equals $\left(\phi_{0}^{(1)}+z \phi_{1}^{(1)}\right)$. $\left(\phi_{0}^{(2)}+z \phi_{1}^{(2)}\right) \cdots\left(\phi_{0}^{(n)}+z \phi_{1}^{(n)}\right)$.

Problem 5

We recall that a real structure C on a complex vector space V is an antilinear involution (called "complex conjugation"); that is, an antilinear map $\mathrm{C}: \mathrm{V} \rightarrow \mathrm{V}$ satisfying $\mathrm{C} \circ \mathrm{C}=i \mathrm{id}_{\mathrm{V}}$. A vector $v \in \mathrm{C}$ is called real with respect to C if $\mathrm{C}(v)=v$.

1. Show that a real structure is equivalent to a linear isomorphism $K: V \rightarrow \bar{V}$ satisfying $j^{-1} \circ \mathrm{~K} \circ \mathfrak{j}^{-1}=\mathrm{K}^{-1}$. Here j is the natural anti-isomorphism $\mathrm{j}: V \rightarrow \overline{\mathrm{~V}}$ defined in the Lecture.
2. Let V be a complex vector space and $\overline{\mathrm{V}}$ its complex-conjugate vector space. Show that $\mathrm{V} \otimes \overline{\mathrm{V}}$ and $\mathrm{V} \oplus \overline{\mathrm{V}}$ carry natural (i.e. without specification of further structural elements) real strucure. Characterise the real vectors in each case.
3. Suppose now that V has a non-degenerate bilinear form ε. Show that now $\mathrm{V} \oplus \overline{\mathrm{V}}^{*}$ has a real structure (that now depends on ε). Characterise the real vectors.

Note: If V is the 2 -dimensional complex vector space carrying the defining representation of $\operatorname{SL}(2, \mathbb{C})$, then elements in V are called Weyl-Spinors, elements in $\mathrm{V} \oplus \overline{\mathrm{V}}^{*}$ Dirac-Spinors, and the real elements in $\mathrm{V} \oplus \overline{\mathrm{V}}^{*}$ Majorana-Spinors (after Ettore Majorana 1906- ????, who mysteriously disappeared in 1938).

Problem 6

From the Lecture we recall the following: Let L be a real Lie-algebra and $\mathbb{C} \otimes_{\mathbb{R}} \mathrm{L}$, which is a real Lie-algebra of twice the dimension as L . It has a natural complex structure defined by $\mathrm{J}_{2}(z \otimes \mathrm{X})=\mathrm{iz} \otimes \mathrm{X}$ (and real-linear extension). The reason why we put the index 2 on J_{2} will become clear below. Hence we can make $\mathbb{C} \otimes \mathrm{L}$ into a complex Lie-algebra, which we now call $(\mathbb{C} \otimes \mathrm{L})^{\mathbb{C}}$, by defining \mathbb{C}-multiplication with $a+i b$ via $(a+i b)(z \otimes X):=[(a+i b) z] \otimes X$. The dimension of $(\mathbb{C} \otimes L)^{\mathbb{C}}$ over \mathbb{C} equals the dimension of L over \mathbb{R}.
Now assume that L already comes equipped with a complex structure J , i.e. a (real)linear map $\mathrm{J}: \mathrm{L} \rightarrow \mathrm{L}$ satisfying $\mathrm{J} \circ \mathrm{J}=-\mathrm{id}_{\mathrm{L}}$ and $\mathrm{J}([\mathrm{X}, \mathrm{Y}])=[\mathrm{J}(\mathrm{X}), \mathrm{Y}]=[\mathrm{X}, \mathrm{J}(\mathrm{Y})]$. Let $L^{\mathbb{C}}$ denote the complex Lie-algebra obtained from L by defining complex multiplication accordingly by $(a+i b) X:=a X+b J(X)$ for all $a, b \in \mathbb{R}$ and all $X \in L$. Note that the complex dimension of $L^{\mathbb{C}}$ equals half the real dimension of L. (The origin of the complex structure J of L is not important here. It may stem from L having the form $\mathbb{C} \otimes L^{\prime}$ for some real Lie-algebra L^{\prime}, but we shall not need such an assumption.) Prove that

$$
\begin{equation*}
(\mathbb{C} \otimes \mathrm{L})^{\mathbb{C}}=\mathrm{L}^{\mathbb{C}} \oplus \overline{\mathrm{L}}^{\mathbb{C}} . \tag{10}
\end{equation*}
$$

Here $\overline{\mathrm{L}}_{\mathbb{C}}$ denotes the complex-conjugate Lie-algebra to $\mathrm{L}_{\mathbb{C}}$, which is based on the complex-conjugate vector space on which the multiplication by \mathbb{C} is defined by composition with complex-conjugation. Note that (10) means says $(\mathbb{C} \otimes L)^{\mathbb{C}}$ decomposes into two ideals of equal dimension if L has a complex structure.
Hint: Forst show that the \mathbb{R}-linear map J on L extends to the \mathbb{R}-linear map $\mathrm{J}_{1}:=\mathrm{id} \otimes \mathrm{J}$ on $\mathbb{C} \otimes \mathrm{L}$ and then also to a \mathbb{C}-linear map - also denoted by $\mathrm{J}_{1}-$ to $(\mathbb{C} \otimes \mathrm{L})$ satisfying $\mathrm{J}_{1}([\mathrm{X}, \mathrm{Y}])=\left[\mathrm{J}_{1}(\mathrm{X}), \mathrm{Y}\right]=\left[\mathrm{X}, \mathrm{J}_{1}(\mathrm{Y})\right]$ and $\mathrm{J}_{1} \circ \mathrm{~J}_{1}=-\mathrm{id}(\mathbb{C} \otimes \mathrm{L})^{\mathrm{C}}$. Next consider on $(\mathbb{C} \otimes L)^{\mathbb{C}}$ the \mathbb{C}-linear maps

$$
\begin{equation*}
\mathrm{P}_{ \pm}:=\frac{1}{2}\left(\mathrm{id}_{(\mathbb{C} \otimes L)^{\mathbb{C}}} \mp \mathfrak{i} \mathrm{J}_{1}\right), \tag{11}
\end{equation*}
$$

and show that they are projectors, i.e. satisfy $P_{ \pm} \circ P_{ \pm}=P_{ \pm}, P_{ \pm} \circ P_{\mp}=0$, and $P_{+}+P_{-}=i d_{(\mathbb{C} \otimes L)^{\mathbb{C}}}$ and also satisfy

$$
\begin{align*}
& J_{1} \circ P_{ \pm}=P_{ \pm} \circ J_{1}= \pm i P_{ \pm}, \\
& P_{ \pm}([X, Y])=\left(\left[P_{ \pm}(X), Y\right]\right)=\left[X, P_{ \pm}(Y)\right] . \tag{12}
\end{align*}
$$

These equations imply that $P_{ \pm}$project onto the eigenspaces of J_{1} with eigenvalues $\pm i$ and that these eigenspaces are Lie-subalgebras.
Remark: The result of this exercise explains the result of the Lecture

$$
\begin{equation*}
\mathbb{C} \otimes \operatorname{Lie}(\operatorname{SL}(2, \mathbb{C})) \cong[\mathbb{C} \otimes \operatorname{Lie}(\operatorname{Su}(2))] \oplus[\mathbb{C} \otimes \operatorname{Lie}(\operatorname{SU}(2))], \tag{13}
\end{equation*}
$$

i.e. that simplicity gets lost in the process of taking $\mathbb{C} \otimes(\cdots)$, while this is not true in other cases, like, e.g.,

$$
\begin{equation*}
\operatorname{Lie}(\operatorname{SL}(2, \mathbb{C})) \cong \mathbb{C} \otimes \operatorname{Lie}(\operatorname{SU}(2)) \tag{14}
\end{equation*}
$$

