
ChriĆmas exercises for the lecture on
Foundations and Applications of Special Relativity

by Domenico Giulini

Ćay healthy and a happy new year!!!

Sheet 10

Problem 1

A rocket is accelerated by ejecting gas with constant velocity of magnitude w (relative
to the rest system of the rocket) and constant rate of mass-units per second. We con-
sider only one-dimensional motion in which the rocket moves in free space (no other
forces acting; in particular no gravitational force) along the positive z-axis.

In this exercise we wish to derive the special-relativitic version of the Tsiolkovsky
equation1.For this you will need the following three special-relativistic laws: 1) energy
conservation; 2) momentum conservation; 3) velocity addition. At each time t think
of the total system as consisting of two subsystems: the rocket (system 1) and the gas
that has been ejected up to t (system 2). Note that the rest-masses of the rocket, m1,
and of the gas, m2, are functions of time: the rocket looses mass and the gas gains
mass due to ejection.

The whole process is described with respect to one and the same inertial system in
which the rocket is initially at rest at the origin and then starts its thrusters at t = 0

ejecting gas in the negative z-direction, as a result of which with the rocket accelerates
in the positive z-direction. In the following we use the abbreviations β := w/c, β1,2 :=
v1,2/c, and γ resp. γ1,2 for the corresponding γ-factors.

1After the Russian rocket scientist Konstantin Tsiolkovsky (1857–1935).
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1. The energy and momentum gained by the rocket in a time intervall dt must equal
minus the energy and momentum gained by the gas in the same time interval.
Show that this leads to

d(m1γ1) = −γ2 dm2 , (1a)

d(m1γ1β1) = −γ2β2 dm2 . (1b)

Show further that
β2 =

β1 − β

1− β1β
. (2)

2. Take equation (1b) (momentum conservation) and eliminate in it dm2 via (1a)
and β2 via (2). This leads to an equation involving only β1,m1, their differ-
entials, and the constant β. Separation of variables allows you to integrate it
either as m1(β1) or as β1(m1). State both forms and use the initial condition
that β = 0 for m1 = M (initial mass). Show that

γ1(m1) =
1

2

!"m1

M

#β
+
"m1

M

#−β
$

(3)

3. What γ-factor would you have to reach in order to travel to our neighbouring
galaxy, Andromeda, within a human lifespan (say 80 years)? How much of
your spaceship would you have to burn at least in order to achieve that? If at
maximal γ you meet a grain of cosmic dust of mass 1µg that gets stuck in your
“windscreen”, how much kinetic energy will it deposit? What speed would a
Rolls-Royce luxury limousine of mass 3 tons have to assume in order to reach
that kinetic energy?

Problem 2

This exercise is almost identical to Problem 5 on Sheet 9, only the initial conditions are
different.

A particle of charge e moves in a constant electric field E = Eex pointing in x-
direction. Its strength E is constant. The Lagrangian is (in this problem a dot denotes
the t-derivative)

L(x, ẋ) = −mc2

%

1−
ẋ2

c2
+ eEx . (4)

1. Solve the equations of motion with initial position x(t = 0) = 0 and initial ve-
locity ẋ(t = 0) = v0ey with v0 > 0. Show that the graph of the spatial trajectory
x(y) is a catenary. What does the catenary turn into in the non-relativistic limit
1/c → 0?

2. Compare the coordinate time t and the proper time τ it takes for the particle to
move from x = 0 at t = 0 to a fixed value x = h.
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Hint. As for Problem 5 on Sheet 9, a first integration of the Euler-Lagrange-Equation
with the given initial data is easy to do. You obtain two equations γẋ = C1t and
γẏ = C2 with some constants C1,2. But this is not yet ready for integration because γ

involves ẋ as well as ẏ. One strategy you can follow is to square the second equation
and use ẋ = ẏ(C1/C2)t to eliminate ẋ. The resulting equation only contains ẏ and t

which you can integrate. The rest follows...

Problem 3

Let u1 ∈ V and u2 ∈ V be two states of motion (future oriented unit timelike vectors).

1. show that the modulus of the relative velocity between them (in units of c) is (a
dot denotes the Minkowski scalar product)

β =

&
(u1 · u2)2 − 1

u1 · u2
. (5)

2. Let u be a third state of motion which we complete to an orthonormal basis
{e0, e1, e2, e3}, where e0 = u. Relative to that basis the velocities of u1 and
u2 are then described by the components β1 and β2, i.e. u1 = γ1(e0 + βk

1ek)
and u2 = γ2(e0 + βk

2ek), where the sum over k ranges from 1 to 3 and where
γ1,2 is the gamma-factor for β1,2. Show that the modulus of the relative velocity
between u1 and u2 is then given by

β =

&
(β1 − β2)

2 − (β1 × β2)
2

1− β1 · β2

. (6)

Note the following: β1,2 refer to u, i.e. are velocities “measured” in the rest
frame of u. But β refers to the velocity of either u2 relative to u1, in which case
it is measured by u1, or u1 relative to u2, in which case it is measured by u2.
There is also a notion of “relative velocity of u1 to u1 measured by u”, which is
different from that considered here.

Problem 4

Consider a timelike curve γ : R → M in Minkowski space. Its derivative with respect
to its proper time τ is denoted by a dot. We consider the first, second, and third proper-
time derivatives γ̇, γ̈, and

...
γ, respectively. γ̇ = v is also called the four-velocity and

γ̈ = a the four-acceleration of the curve γ.

1. Show that the four-acceleration is always perpendicular to the four-velocity, i.e.

γ̇ · γ̈ = 0 . (7)

2. The curve γ is said to be of constant acceleration iff

P⊥
γ̇ (

...
γ) :=

...
γ − γ̇

γ̇ · ...
γ

c2
= 0 (8)
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where P⊥
γ̇ is the projection into the orthogonal complement of γ̇ (note that γ̇2 =

c2 because the dot refers to proper time, which is c−1 times proper length). State
in words in what sense (8) is a reasonable definition of “constant acceleration”
and then show that it is equivalent to

...
γ = ω2 γ̇ (9a)

where ω is a real, non-negative constant given by

ω :=

'
−

γ̈2

c2
. (9b)

Hint: First recall (7) and show that (8) implies that γ̈2 is constant along the
curve.

3. Integrate (9a) and show that the most general solution is given by

γ(τ) = p+
"
ℓ1 exp(ωτ)− ℓ2 exp(−ωτ)

#
, (10a)

where p is some point in M and ℓ1, ℓ2 are two future-pointing lightlike vectors
in V satisfying

ℓ1 · ℓ2 =
c2

2ω2
. (10b)

4. Show that
e0 :=

ω

c
(ℓ1 + ℓ2) , e1 :=

ω

c
(ℓ1 − ℓ2) (11)

is a orthonormal (e0 · e0 = −e1 · e1 = 1, e0 · e1 = 0) basis of span{ℓ1, ℓ2} in
terms of which (10a) reads

γ(τ) = p+
c

ω

"
sinh(ωτ) e0 + cosh(ωτ) e1

#
(12)

showing that we are dealing with a hyperbolic motion in the timelike affine
plane p + span{e0, e1} = p + span{ℓ1, ℓ2} of Minkowski space the constant
acceleration of which is

&
−γ̈2 = ωc.

Problem 5

Let us look at the constant-acceleration motion in a coordinate-based language. With
respect to adapted affine coordinates the {x0, x1, x2, x3} with x0 = ct and t as
curve parameter a timelike curve in Minkowski space is analytically described by
(α = 0, · · · , 3)

t #→ xα(t) :=
(
ct , x(t)

)
(13)

1. Show that the derivative with respect to eigentime τ and coordinate time t are
related by

d

dτ
= γ(t)

d

dt
(14)

where γ(t) = 1/
&

1− x ′2(t)/c2. In the following we denote derivatives with
respect to t by a prime and with respect to τ by a dot and abbreviate

x ′ = v , x ′′ = a , x ′′′ = b . (15)
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2. Show
ẋα = γ(c, v) and γ ′ = γ3 v · a

c2
. (16)

and further

ẍα = γ ′ẋα + γ2(0, a) , (17)
...
xα = (γγ ′) ′ẋα + γ2(0 , 3γ ′a + γb) . (18)

3. The condition (8) of constant acceleration is equivalent to

...
xα − ẋα

ηµν ẋ
µ ...
xν

c2
= 0 . (19)

Show that applied to (18) this is equivalent to

3γ ′a + γb = 0 , (20)

that is
(γ3a) ′ = 0 , (21)

which is the coordinate-equivalent to (8).

4. Finally, denote by a‖ and a⊥ the components parallel and perpendicular to v of
a. Show that

(γv) ′ = γ3a‖ + γa⊥ , (22)

and conclude that if (21) is once integrated to γ3a = g, where g ∈ R3 is constant,
and the initial velocity is parallel to g, then the motion satisfies

(γv) ′ = g (23)

and can be integrated as in Problem 5 of Sheet 9 resulting in a hyperbolic motion
in the plane containing the t axis and the spatial axis in g direction.

But even if the initial velocity is not parallel to g, we still know from the pre-
vious Problem 4 that any solution to (21) results in a hyperbolic motion within
a single timelike plane. Can that also be deduced directly from (23)? Note that
in that case (23) is not valid. Is the solution to Problem 2 above of constant
acceleration?
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