
Exercises for the lecture on

Foundations and Applications of Special Relativity
von DOMENICO GIULINI

Sheet 12

Problem 1

A point particle of mass m and charge q moves along a future-oriented timelike curve
τ → z(τ) ∈ M, where we take the parameter τ to be the eigentime; hence ż2 = c2,
where ż := dz/dτ. The components of Jα of the electric four-current density and the
components of the energy-momentum tensor are now distributions on M and given by

Jα(x) := qc

∫
dτ δ(4)

!
x− z(τ)

"
żα(τ) , (1)

Tαβ(x) := mc

∫
dτ δ(4)

!
x− z(τ)

"
żα(τ)żβ(τ) . (2)

1. Justify these expressions.

2. Show that the expression (1) could just as well have been written in terms of any
other parameter λ instead of τ.

3. Prove that ∇αJ
α = 0 (as a distribution).

4. Prove that ∇αT
αβ = 0 (as a distribution) iff z̈ = 0, i.e. if the curve is a straight

line.

Problem 2

1. Prove that the relativistic Maxwell-Equations for a given source Jα are the Euler-
Lagrange-Equations for the following action functional:

Sf[A] =

∫
d4x

1

c

{
−

1

4µ0
Fαβ(x)F

αβ(x)−Aα(x) J
α(x)

}
, (3)

where the field to be varied is A, on which F depends via Fαβ = ∇αAβ−∇βAα.

Hint: If L denotes the integrand of the action functional (called the Lagrange
density), the Euler-Lagrange-Equations are

∇α

#
∂L

∂(∇αAβ)

$
−

∂L

∂Aβ
= 0 . (4)

2. Why did we choose the overall sign and factor the way we did? (The Euler-
Lagrange-Equations are insensitive to that.)
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3. A relativistic particle of mass m is described by a future-oriented timelike world-
line λ → z(λ), where now λ is an arbitrary parameter. As we know, its action
is

Sp[z] = −mc

∫
dλ

%
z ′α(λ)z

′α(λ) (5)

If the particle carries a charge q, it has a four-current density given by (1) (with λ

replacing τ). Suppose the particle moves in an electromagnetic field represented
by A, then its interaction with the field contributes a term according to (3). Show
that the total action of the particle, now including its interaction with the field, is

Sp+int =

∫
dλ

{
−mc

%
z ′α(λ)z

′α(λ)− qAα

!
z(λ)

"
z ′α(λ)

}
(6)

and that its Euler-Lagrange-Equations are

mz̈α(τ) = q Fαβ
!
z(τ)

"
żβ(τ) , (7)

where a dot is again the derivative with respect to the eigentime parameter τ

which – we recall – obeys cdτ =
%

z ′α(λ)z ′α(λ) dλ.

Hint: In this case, if L denotes the integrand for the integral (6) (the Lagrange
function), the Euler-Lagrange-Equations are

d

dλ

#
∂L

∂z ′β

$
−

∂L

∂zβ
= 0 . (8)

Problem 3

The Abraham-Lorentz-Equation in “ordinary” electrodynamics is meant to describe
the spatial curve t #→ z(t) of a slowly (i.e. ‖ż‖/c ≪ 1) moving point-particle of mass
m and charge q under the action of an external electromagnetic field (E , B) and the
particle’s own radiation-reaction force. It reads:

mz̈ = q
!
E + ż × B

"
+ σm

...z , (9)

where σ is a constant with the physical dimension of time:

σ =
µ0q

2

6πcm
. (10)

1. Show that σ can be rewritten as

σ =
4

3
· q2

8πε0mc2
· 1
c

(11)

and use that form to interpret σ as a travel-time for light over a certain distance.
What is that distance? What is its numerical value for the electron?

2. The relativistic generalisation of the the Abraham-Lorentz-Equation is the
Lorentz-Dirac-Equation, which is not restricted to small velocities. It reads in
components for the worldline τ #→ zα(τ), parametrised by the eigentime τ,

mz̈α = q Fαβż
β +mσ

#
...
zα +

z̈βz̈β

c2
żα
$

. (12)
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Here a dot now indicates the proper-time derivative. Argue that this is indeed the
“obvious” generalisation of the Abraham-Lorentz equation (9). In particular, ar-
gue why the second factor in the bracket on the right-hand side is necessary and
that without it the equation would certainly not capture the physically intended
meaning and have almost no solutions. (Hint: Multiply the equation with żα and
recall that a four-acceleration z̈ is always perpendicular to the four-velocity ż.)
What is the geometric interpretation of the sum the two terms in the bracket?
(Hint: Compare Problem 4 on Sheet 10).

3. In Problem 5 of Sheet 9 we discussed the solution for the equation of motion for
a point particle in a constant electric field, given that the particle was initially
at rest. In Problem 5 (part 4) of Sheet 10 we identified this solution to be of
constant acceleration. Prove that this particular solution also solves the Lorentz-
Dirac equation (for the same constant electric field).

4. Without external field the Lorentz-Dirac-Equation van be written as

u̇α = σ
&
üα + u̇βu̇β u

α
'
, (13)

where we set uα := żα/c so that uαuα = 1. It follows from this equation that
any solution remains in the timelike plane spanned by the initial vectors u and
u̇. Let this plane be spanned by the orthonormal vectors e0 (timelike) and e1
(spacelike). Then the components u0 and u1 of the vector u = u0e0 + u1e1,
which obey (u0)2 − (u1)2 = 1 may be written in terms of the rapidity ρ(τ) as
follows

u0 = cosh(ρ) and u1 = sinh(ρ) . (14)

Show that (13) is now equivalent to the linear equation

ρ̈ = ρ̇/σ . (15)

Use this to determine the most general solution for ρ(τ) and hence for z(τ).
Show that in addition to the inertial motions (straight worldlines) you get accel-
erated solutions with exponentially growing rapidity.

Problem 4

This is problem 6 of sheet 11 reloaded.
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