Exercises for the lecture on
Foundations and Applications of Special Relativity

von DOMENICO GIULINI

Sheet 12

Problem 1

A point particle of mass m and charge g moves along a future-oriented timelike curve

T — z(1) € M, where we take the parameter T to be the eigentime; hence 22 = c?,

where z := dz/dt. The components of J* of the electric four-current density and the
components of the energy-momentum tensor are now distributions on M and given by

J*(x) = chd*réW (x —z(1)) 2%(1), (1)

T*(x) :== mc J dt 6 (x — z(1)) 2%(1)2P (1) . )

1. Justify these expressions.

2. Show that the expression (1) could just as well have been written in terms of any
other parameter A instead of T.

3. Prove that V4J* = 0 (as a distribution).

4. Prove that V4 T*® = 0 (as a distribution) iff Z = 0, i.e. if the curve is a straight
line.

Problem 2

1. Prove that the relativistic Maxwell-Equations for a given source J* are the Euler-
Lagrange-Equations for the following action functional:

SA = J aix ) {—4‘E Fup (OF™B (x) — Aw(x) J“(X)} . B

c

where the field to be varied is A, on which F depends via Fog = VA —VA,.

Hint: If . denotes the integrand of the action functional (called the Lagrange
density), the Euler-Lagrange-Equations are

0. 0.
Va <6(V(XA[3)) T A 0. “)

2. Why did we choose the overall sign and factor the way we did? (The Euler-
Lagrange-Equations are insensitive to that.)
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3. Arelativistic particle of mass m is described by a future-oriented timelike world-
line A — z(A), where now A is an arbitrary parameter. As we know, its action

is
Splzl = —mcjd?x vV ZL(N)Z'*(A) 5)

If the particle carries a charge q, it has a four-current density given by (1) (with A
replacing T). Suppose the particle moves in an electromagnetic field represented
by A, then its interaction with the field contributes a term according to (3). Show
that the total action of the particle, now including its interaction with the field, is

Sprint = Jd?\{—mc\/z&(?\)z’“(?\) — qA«(z(V) z""(A)} (6)

and that its Euler-Lagrange-Equations are
mz*(t) = q F (2(1) 2P (1) (7)

where a dot is again the derivative with respect to the eigentime parameter T
which — we recall — obeys cdt = /z/*(A)z/ (A) dA.

Hint: In this case, if L denotes the integrand for the integral (6) (the Lagrange
function), the Euler-Lagrange-Equations are

d oL oL
a (ays) “ap O ®

Problem 3

The Abraham-Lorentz-Equation in “ordinary” electrodynamics is meant to describe
the spatial curve t — z(t) of a slowly (i.e. ||z||/c < 1) moving point-particle of mass
m and charge q under the action of an external electromagnetic field (E, B) and the
particle’s own radiation-reaction force. It reads:

mi=q(E+zxB)+om7Z, ©)
where o is a constant with the physical dimension of time:
2
6mcm
1. Show that o can be rewritten as
4 q? 1
o=z ——5 — 11

3 8meggme? ¢ (b

and use that form to interpret ¢ as a travel-time for light over a certain distance.
What is that distance? What is its numerical value for the electron?

2. The relativistic generalisation of the the Abraham-Lorentz-Equation is the
Lorentz-Dirac-Equation, which is not restricted to small velocities. It reads in
components for the worldline T — z%(T), parametrised by the eigentime T,

..B..
"z
mz% = qFzP +mo<z°‘—i——c26 z“) : (12)
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Here a dot now indicates the proper-time derivative. Argue that this is indeed the
“obvious” generalisation of the Abraham-Lorentz equation (9). In particular, ar-
gue why the second factor in the bracket on the right-hand side is necessary and
that without it the equation would certainly not capture the physically intended
meaning and have almost no solutions. (Hint: Multiply the equation with z, and
recall that a four-acceleration Z is always perpendicular to the four-velocity Z.)
What is the geometric interpretation of the sum the two terms in the bracket?
(Hint: Compare Problem 4 on Sheet 10).

3. In Problem 5 of Sheet 9 we discussed the solution for the equation of motion for
a point particle in a constant electric field, given that the particle was initially
at rest. In Problem 5 (part4) of Sheet 10 we identified this solution to be of
constant acceleration. Prove that this particular solution also solves the Lorentz-
Dirac equation (for the same constant electric field).

4. Without external field the Lorentz-Dirac-Equation van be written as
= a(u“+uf’uﬁ u"‘), (13)

where we set u* := z%/c so that u*u, = 1. It follows from this equation that
any solution remains in the timelike plane spanned by the initial vectors u and
1. Let this plane be spanned by the orthonormal vectors ey (timelike) and e;
(spacelike). Then the components u® and u' of the vector u = uleqy + u! e1,
which obey (1°)? — (u')? = 1 may be written in terms of the rapidity p(T) as

follows

u® = cosh(p) and u' =sinh(p). (14)

Show that (13) is now equivalent to the linear equation
p=p/o. (15)

Use this to determine the most general solution for p(t) and hence for z(T).
Show that in addition to the inertial motions (straight worldlines) you get accel-
erated solutions with exponentially growing rapidity.

Problem 4

This is problem 6 of sheet 11 reloaded.
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