Exercises for the lecture on

Foundations and Applications of Special Relativity

von Domenico Giulini

Sheet 12

Problem 1

A point particle of mass m and charge q moves along a future-oriented timelike curve $\tau \rightarrow z(\tau) \in M$, where we take the parameter τ to be the eigentime; hence $\dot{z}^{2}=c^{2}$, where $\dot{z}:=\mathrm{d} z / \mathrm{d} \tau$. The components of J^{α} of the electric four-current density and the components of the energy-momentum tensor are now distributions on M and given by

$$
\begin{align*}
\mathrm{J}^{\alpha}(x) & :=\mathrm{qc} \int \mathrm{~d} \tau \delta^{(4)}(x-z(\tau)) \dot{z}^{\alpha}(\tau), \tag{1}\\
\mathrm{T}^{\alpha \beta}(x) & :=\mathrm{mc} \int \mathrm{~d} \tau \delta^{(4)}(x-z(\tau)) \dot{z}^{\alpha}(\tau) \dot{z}^{\beta}(\tau) . \tag{2}
\end{align*}
$$

1. Justify these expressions.
2. Show that the expression (1) could just as well have been written in terms of any other parameter λ instead of τ.
3. Prove that $\nabla_{\alpha} J^{\alpha}=0$ (as a distribution).
4. Prove that $\nabla_{\alpha} T^{\alpha \beta}=0$ (as a distribution) iff $\ddot{z}=0$, i.e. if the curve is a straight line.

Problem 2

1. Prove that the relativistic Maxwell-Equations for a given source J^{α} are the Euler-Lagrange-Equations for the following action functional:

$$
\begin{equation*}
S_{f}[\mathcal{A}]=\int d^{4} x \frac{1}{c}\left\{-\frac{1}{4 \mu_{0}} F_{\alpha \beta}(x) F^{\alpha \beta}(x)-A_{\alpha}(x) J^{\alpha}(x)\right\}, \tag{3}
\end{equation*}
$$

where the field to be varied is A, on which F depends via $F_{\alpha \beta}=\nabla_{\alpha} A_{\beta}-\nabla_{\beta} A_{\alpha}$. Hint: If \mathscr{L} denotes the integrand of the action functional (called the Lagrange density), the Euler-Lagrange-Equations are

$$
\begin{equation*}
\nabla_{\alpha}\left(\frac{\partial \mathscr{L}}{\partial\left(\nabla_{\alpha} A_{\beta}\right)}\right)-\frac{\partial \mathscr{L}}{\partial A_{\beta}}=0 . \tag{4}
\end{equation*}
$$

2. Why did we choose the overall sign and factor the way we did? (The Euler-Lagrange-Equations are insensitive to that.)
3. A relativistic particle of mass m is described by a future-oriented timelike worldline $\lambda \rightarrow z(\lambda)$, where now λ is an arbitrary parameter. As we know, its action is

$$
\begin{equation*}
S_{p}[z]=-m c \int d \lambda \sqrt{z_{\alpha}^{\prime}(\lambda) z^{\prime \alpha}(\lambda)} \tag{5}
\end{equation*}
$$

If the particle carries a charge q , it has a four-current density given by (1) (with λ replacing τ). Suppose the particle moves in an electromagnetic field represented by A, then its interaction with the field contributes a term according to (3). Show that the total action of the particle, now including its interaction with the field, is

$$
\begin{equation*}
\mathrm{S}_{\mathrm{p}+\mathrm{int}}=\int \mathrm{d} \lambda\left\{-\mathrm{mc} \sqrt{z_{\alpha}^{\prime}(\lambda) z^{\prime \alpha}(\lambda)}-\mathrm{q} \mathrm{~A}_{\alpha}(z(\lambda)) z^{\prime \alpha}(\lambda)\right\} \tag{6}
\end{equation*}
$$

and that its Euler-Lagrange-Equations are

$$
\begin{equation*}
m \ddot{z}^{\alpha}(\tau)=q F_{\beta}^{\alpha}(z(\tau)) \dot{z}^{\beta}(\tau), \tag{7}
\end{equation*}
$$

where a dot is again the derivative with respect to the eigentime parameter τ which - we recall - obeys $c d \tau=\sqrt{z^{\prime \alpha}(\lambda) z_{\alpha}^{\prime}(\lambda)} \mathrm{d} \lambda$.
Hint: In this case, if L denotes the integrand for the integral (6) (the Lagrange function), the Euler-Lagrange-Equations are

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} \lambda}\left(\frac{\partial \mathrm{~L}}{\partial z^{\prime \beta}}\right)-\frac{\partial \mathrm{L}}{\partial z^{\beta}}=0 . \tag{8}
\end{equation*}
$$

Problem 3

The Abraham-Lorentz-Equation in "ordinary" electrodynamics is meant to describe the spatial curve $\mathrm{t} \mapsto \mathbf{z}(\mathrm{t})$ of a slowly (i.e. $\|\dot{\mathbf{z}}\| / \mathrm{c} \ll 1$) moving point-particle of mass m and charge q under the action of an external electromagnetic field (\mathbf{E}, \mathbf{B}) and the particle's own radiation-reaction force. It reads:

$$
\begin{equation*}
\mathrm{m} \ddot{\mathbf{z}}=\mathrm{q}(\mathbf{E}+\dot{\mathbf{z}} \times \mathbf{B})+\sigma \mathrm{m} \dddot{\mathbf{z}}, \tag{9}
\end{equation*}
$$

where σ is a constant with the physical dimension of time:

$$
\begin{equation*}
\sigma=\frac{\mu_{0} q^{2}}{6 \pi c m} . \tag{10}
\end{equation*}
$$

1. Show that σ can be rewritten as

$$
\begin{equation*}
\sigma=\frac{4}{3} \cdot \frac{q^{2}}{8 \pi \varepsilon_{0} m c^{2}} \cdot \frac{1}{c} \tag{11}
\end{equation*}
$$

and use that form to interpret σ as a travel-time for light over a certain distance. What is that distance? What is its numerical value for the electron?
2. The relativistic generalisation of the the Abraham-Lorentz-Equation is the Lorentz-Dirac-Equation, which is not restricted to small velocities. It reads in components for the worldline $\tau \mapsto z^{\alpha}(\tau)$, parametrised by the eigentime τ,

$$
\begin{equation*}
m \ddot{z}^{\alpha}=q F_{\beta}^{\alpha} \dot{z}^{\beta}+m \sigma\left(\dddot{z}^{\alpha}+\frac{\ddot{z}^{\beta} \ddot{z}_{\beta}}{c^{2}} \dot{z}^{\alpha}\right) . \tag{12}
\end{equation*}
$$

Here a dot now indicates the proper-time derivative. Argue that this is indeed the "obvious" generalisation of the Abraham-Lorentz equation (9). In particular, argue why the second factor in the bracket on the right-hand side is necessary and that without it the equation would certainly not capture the physically intended meaning and have almost no solutions. (Hint: Multiply the equation with \dot{z}_{α} and recall that a four-acceleration \ddot{z} is always perpendicular to the four-velocity \dot{z}.) What is the geometric interpretation of the sum the two terms in the bracket? (Hint: Compare Problem 4 on Sheet 10).
3. In Problem 5 of Sheet 9 we discussed the solution for the equation of motion for a point particle in a constant electric field, given that the particle was initially at rest. In Problem 5 (part 4) of Sheet 10 we identified this solution to be of constant acceleration. Prove that this particular solution also solves the LorentzDirac equation (for the same constant electric field).
4. Without external field the Lorentz-Dirac-Equation van be written as

$$
\begin{equation*}
\dot{u}^{\alpha}=\sigma\left(\ddot{u}^{\alpha}+\dot{u}^{\beta} \dot{u}_{\beta} u^{\alpha}\right), \tag{13}
\end{equation*}
$$

where we set $u^{\alpha}:=\dot{z}^{\alpha} / c$ so that $u^{\alpha} u_{\alpha}=1$. It follows from this equation that any solution remains in the timelike plane spanned by the initial vectors u and \dot{u}. Let this plane be spanned by the orthonormal vectors e_{0} (timelike) and e_{1} (spacelike). Then the components u^{0} and u^{1} of the vector $u=u^{0} e_{0}+u^{1} e_{1}$, which obey $\left(u^{0}\right)^{2}-\left(u^{1}\right)^{2}=1$ may be written in terms of the rapidity $\rho(\tau)$ as follows

$$
\begin{equation*}
u^{0}=\cosh (\rho) \quad \text { and } \quad u^{1}=\sinh (\rho) . \tag{14}
\end{equation*}
$$

Show that (13) is now equivalent to the linear equation

$$
\begin{equation*}
\ddot{\rho}=\dot{\rho} / \sigma . \tag{15}
\end{equation*}
$$

Use this to determine the most general solution for $\rho(\tau)$ and hence for $z(\tau)$. Show that in addition to the inertial motions (straight worldlines) you get accelerated solutions with exponentially growing rapidity.

Problem 4

This is problem 6 of sheet 11 reloaded.

