Exercises for the lecture on

Foundations and Applications of Special Relativity

von DOMENICO GIULINI

Sheet 3

Problem 1

In the lecture we wrote down a Lorentz boosts with respect to inertial coordinates (ct, x, y, z). It reads (interpreted actively)

$$\begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix} \longmapsto B(\beta \mathbf{e}_x) \begin{pmatrix} ct \\ x \\ y \\ z \end{pmatrix}$$
(1a)

where

$$B(\beta \mathbf{e}_{x}) := \begin{pmatrix} \gamma & \beta \gamma & 0 & 0\\ \beta \gamma & \gamma & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
(1b)

and

$$\gamma := \frac{1}{\sqrt{1 - \beta^2}}, \qquad \beta := \frac{\nu}{c}. \tag{1c}$$

1. Show that $B(\beta e_x)$ is a symmetric and positive-definite linear map in \mathbb{R}^4 with respect to the standard euclidean inner product, the eigenvalues of which are

$$\lambda_{1,2} = \gamma \pm \sqrt{\gamma^2 - 1} = \sqrt{\frac{1 \pm \beta}{1 \mp \beta}}, \qquad \lambda_{3,4} = 1, \qquad (2)$$

(note that $\lambda_2 = \lambda_1^{-1}$) and the normalised eigenvectors of which are

$$\mathbf{E}_{1,2} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ \pm 1 \\ 0 \\ 0 \end{pmatrix}, \qquad \mathbf{E}_{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \qquad \mathbf{E}_{3} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}. \tag{3}$$

2. A spatial rotation with $D \in SO(3)$ is represented, again with respect to the standard basis in \mathbb{R}^4 , by the (4×4) matrix (written in 1+3 form)

$$\mathbf{R}(\mathbf{D}) = \begin{pmatrix} \mathbf{1} & \mathbf{0}^{\mathsf{T}} \\ \mathbf{0} & \mathbf{D} \end{pmatrix} \,. \tag{4}$$

Show that

$$R(D)B(\beta \mathbf{e}_{x})R(D^{-1}) = B(\beta D\mathbf{e}_{x}),$$
(5)

1/2

Foundations and Applications of Special Relativity, WS 2021/22 qig.itp.uni-hannover.de/~giulini/

and that, consequently, a boost in a general direction $\mathbf{n} = D\mathbf{e}_{\chi}$ is given by

$$B(\beta \mathbf{n}) = \begin{pmatrix} \gamma & \beta \gamma \mathbf{n}^{\top} \\ \beta \gamma \mathbf{n} & E_3 + (\gamma - 1) \mathbf{n} \otimes \mathbf{n}^{\top} \end{pmatrix}.$$
(6)

Here E_3 denotes the unit (3×3) matrix and $\mathbf{n} \otimes \mathbf{n}^{\top}$ is the (3×3) -matrix with components $n_a n_b$. Hence a Lorentz boost in the direction \mathbf{n} can also be written

$$\operatorname{ct} \mapsto \gamma(\operatorname{ct} + \beta(\mathbf{n} \cdot \mathbf{x})),$$
 (7a)

$$\mathbf{x} \mapsto \mathbf{x} + (\gamma - 1)\mathbf{n}(\mathbf{n} \cdot \mathbf{x}) + \beta \gamma \operatorname{nct}$$
 (7b)

- 3. Show that (7) also follows directly from (1) by writing $\mathbf{x} = \mathbf{x}_{\parallel} + \mathbf{x}_{\perp}$, where \mathbf{x}_{\parallel} and \mathbf{x}_{\perp} correspond to the components parallel and perpendicular to the boost direction \mathbf{e}_{x} .
- 4. Show that a general Boost transformation leaves a 2-dimensional plane in \mathbb{R}^4 pointwise fixed and transforms the orthogonal plane (with respect to the euclidean inner product) non-trivially into itself with only fixed-point being the origin. Give a geometric description of the orbits of that action.

Problem 2

Let $M \in GL(\mathbb{R}^n)$ be a general invertible $(n \times n)$ -matrix with real entries. Show that it has a unique so-called "polar decomposition"

$$M = PO \tag{8}$$

into an orthogonal matrix $O \in O(3)$ and a symmetric and positive-definite matrix P (written in the order just stated).

Hint: Consider MM^{\top} and prove that it is symmetric and positive definite. Argue that there is a positive square-root $P := \sqrt{MM^{\top}}$ which is also symmetric and positive definite, so that $P^2 = MM^{\top}$. Then define $O := P^{-1}M$ and prove that it is orthogonal. This proves existence. For uniqueness assume $M = P_1O_1 = P_2O_2$ with $P_{1,2}$ symmetric and positive-definite and $O_{1,2}$ orthogonal. Show that then $P_1 = P_2$ and $O_1 = O_2$ follow.

Problem 3

This problem is partly a repetition of Problem 3 on Sheet 2 which we did not yet come to discuss so far. Let $\mathbf{V} : \mathbb{R}^3 \to \mathbb{R}^3$ be a vector field.

1. Show that the equations

$$\boldsymbol{\nabla} \cdot \mathbf{V} = \mathbf{0} \quad \text{and} \quad \boldsymbol{\nabla} \times \mathbf{V} = \mathbf{0} \tag{9}$$

permit rotations as symmetries in the sense given on Sheet 2.

2. Derive the form of the most general rotation-invariant vector field and find amongst them all solutions to the first equation (9) and also all solutions to the second equation.