Exercises for the lecture on

## Foundations and Applications of Special Relativity

von Domenico Giulini

## Sheet 3

## Problem 1

In the lecture we wrote down a Lorentz boosts with respect to inertial coordinates (ct, $x, y, z$ ). It reads (interpreted actively)

$$
\left(\begin{array}{c}
c t  \tag{1a}\\
x \\
y \\
z
\end{array}\right) \longmapsto B\left(\beta \mathbf{e}_{x}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

where

$$
\mathrm{B}\left(\beta \mathbf{e}_{\chi}\right):=\left(\begin{array}{cccc}
\gamma & \beta \gamma & 0 & 0  \tag{1b}\\
\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and

$$
\begin{equation*}
\gamma:=\frac{1}{\sqrt{1-\beta^{2}}}, \quad \beta:=\frac{v}{c} . \tag{1c}
\end{equation*}
$$

1. Show that $B\left(\beta \mathbf{e}_{x}\right)$ is a symmetric and positive-definite linear map in $\mathbb{R}^{4}$ with respect to the standard euclidean inner product, the eigenvalues of which are

$$
\begin{equation*}
\lambda_{1,2}=\gamma \pm \sqrt{\gamma^{2}-1}=\sqrt{\frac{1 \pm \beta}{1 \mp \beta}}, \quad \lambda_{3,4}=1 \tag{2}
\end{equation*}
$$

(note that $\lambda_{2}=\lambda_{1}^{-1}$ ) and the normalised eigenvektors of which are

$$
\mathbf{E}_{1,2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1  \tag{3}\\
\pm 1 \\
0 \\
0
\end{array}\right), \quad \mathbf{E}_{3}=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \mathbf{E}_{3}=\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

2. A spatial rotation with $\mathrm{D} \in \mathrm{SO}(3)$ is represented, again with respect to the standard basis in $\mathbb{R}^{4}$, by the $(4 \times 4)$ matrix (written in $1+3$ form)

$$
R(D)=\left(\begin{array}{cc}
1 & \mathbf{0}^{\top}  \tag{4}\\
\mathbf{0} & D
\end{array}\right)
$$

Show that

$$
\begin{equation*}
R(D) B\left(\beta \mathbf{e}_{x}\right) R\left(D^{-1}\right)=B\left(\beta D \mathbf{e}_{x}\right), \tag{5}
\end{equation*}
$$

and that, consequently, a boost in a general direction $\mathbf{n}=D \mathbf{e}_{x}$ is given by

$$
B(\beta \mathbf{n})=\left(\begin{array}{cc}
\gamma & \beta \gamma \mathbf{n}^{\top}  \tag{6}\\
\beta \gamma \mathbf{n} & E_{3}+(\gamma-1) \mathbf{n} \otimes \mathbf{n}^{\top}
\end{array}\right) .
$$

Here $E_{3}$ denotes the unit $(3 \times 3)$ matrix and $\mathbf{n} \otimes \mathbf{n}^{\top}$ is the $(3 \times 3)$-matrix with components $n_{a} n_{b}$. Hence a Lorentz boost in the direction $\mathbf{n}$ can also be written

$$
\begin{align*}
\mathrm{ct} & \mapsto \gamma(\mathrm{ct}+\beta(\mathbf{n} \cdot \mathbf{x})),  \tag{7a}\\
\mathbf{x} & \mapsto \mathbf{x}+(\gamma-1) \mathbf{n}(\mathbf{n} \cdot \mathbf{x})+\beta \gamma \mathbf{n c t} \tag{7b}
\end{align*}
$$

3. Show that (7) also follows directly from (1) by writing $\mathbf{x}=\mathbf{x}_{\|}+\mathbf{x}_{\perp}$, where $\mathbf{x}_{\|}$ and $\mathbf{x}_{\perp}$ correspond to the components parallel and perpendicular to the boost direction $\mathbf{e}_{x}$.
4. Show that a general Boost transformation leaves a 2-dimensional plane in $\mathbb{R}^{4}$ pointwise fixed and transforms the orthogonal plane (with respect to the euclidean inner product) non-trivially into itself with only fixed-point being the origin. Give a geometric description of the orbits of that action.

## Problem 2

Let $M \in \operatorname{GL}\left(\mathbb{R}^{n}\right)$ be a general invertible ( $n \times n$ )-matrix with real entries. Show that it has a unique so-called "polar decomposition"

$$
\begin{equation*}
\mathrm{M}=\mathrm{PO} \tag{8}
\end{equation*}
$$

into an orthogonal matrix $\mathrm{O} \in \mathrm{O}(3)$ and a symmetric and positive-definite matrix P (written in the order just stated).
Hint: Consider $M M^{\top}$ and prove that it is symmetric and positive definite. Argue that there is a positive square-root $\mathrm{P}:=\sqrt{\mathrm{MM}^{\top}}$ which is also symmetric and positive definite, so that $\mathrm{P}^{2}=M M^{\top}$. Then define $\mathrm{O}:=\mathrm{P}^{-1} \mathrm{M}$ and prove that it is orthogonal. This proves existence. For uniqueness assume $M=P_{1} O_{1}=P_{2} O_{2}$ with $P_{1,2}$ symmetric and positive-definite and $\mathrm{O}_{1,2}$ orthogonal. Show that then $\mathrm{P}_{1}=\mathrm{P}_{2}$ and $\mathrm{O}_{1}=\mathrm{O}_{2}$ follow.

## Problem 3

This problem is partly a repetition of Problem 3 on Sheet 2 which we did not yet come to discuss so far. Let $\mathbf{V}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be a vector field.

1. Show that the equations

$$
\begin{equation*}
\boldsymbol{\nabla} \cdot \mathbf{V}=0 \quad \text { and } \quad \boldsymbol{\nabla} \times \mathbf{V}=\mathbf{0} \tag{9}
\end{equation*}
$$

permit rotations as symmetries in the sense given on Sheet 2.
2. Derive the form of the most general rotation-invariant vector field and find amongst them all solutions to the first equation (9) and also all solutions to the second equation.

