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The picture shows a vehicle consisting of two wheels (red) and a body (dark blue)
which can freely move along the horizontal direction. The wheels are made of con-
ducting material whereas the body is an isolator. The two wheels are connected to the
two poles of a light-bulb B that is fixed to the vehicle, so that an electric current can
flow and the bulb can emit photons if the front and rear wheels are connected to the
two poles of a battery. Such a battery providing a voltage V is kept underground with
its two poles connected to conducting strips along the horizontal line along which the
vehicle rolls. The ground material (light blue) is an isolator and conducting strips on
its surface have a horizontal gap of length ℓ which is less than the distance L at which
the wheels touch the ground if the vehicle is at rest. This means that if the vehicle is
at rest and placed as in the picture, it bridges the gap between the conducting strips,
the circuit will be closed and the bulb will emit photons. This remains true, at least for
some time, if the vehicle slowly moves with velocity v in the horizontal direction. But
what happens is v becomes large?

1. Judged from K, the rest system of the ground, the length of the vehicle and
hence the distance of the wheels contracts by a factor of γ−1 =

!
1− β2, where

β = v/c. Hence, for γ1ℓ < L, the vehicle cannot bridge the gap anymore and
no current will ever flow; there will be no photons emitted by B.

2. Judged from K ′, the rest system of the vehicle, the gap between the conducting
strips will suffer a length contraction which makes it even easier for the vehicle
to bridge the gap. Hence, for each velocity v < c, there is always a finite time
interval during which the circuit is closed and a current can flow; there will be
photons emitted.

3. Clearly, the existence of a photon is either true or false. So, who is right?
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Problem 2

We consider relativistic addition for the special case of parallel velocities. If v = vex
is added to v1 = v1ex the result is v2 = v2ex with

v2 =
v+ v1
1+ vv1

c2
. (1)

1. Show that the corresponding rapidities (α := tanh−1(v) etc.) just add: α2 =
α+ α1.

2. Apply (1) to the situation where v1 = c/n is the speed of light in the rest frame
K ′ of a medium of refractive index n, and v is the speed of the medium relative
to the frame K. Show that to leading order in (1/c) the Fresnel drag-coefficient
results (without involving any aether-model!):

v2 ≈
c

n
+ vϕ , with ϕ = (1− n−2) . (2)

3. If n depends on the wavelength of the light (dispersion) we need to distin-
guish between the wavelength λ ′ measured in K ′ (i.e. in the rest system of the
medium) und the wavelength λ measured in K. They differ due to the Doppler
effect the leading order (in 1/c) of which is just the familiar

λ ′ ≈ λ

"
1+

v

v1

#
= λ

$
1+

vn

c

%
. (3)

Show that this leads to the following leading-order correction to (2) if in it we
re-express n, which refers to n(λ ′), by n(λ):

v2 ≈
c

n
+ vϕ , with ϕ =

"
1− n−2 −

λ

n

dn

dλ

#
. (4)

Remark: The extra term ∝ dn/dλ, has first been experimentally verified in 1914 by
Pieter Zeeman (the same as in the “Zeeman-Effect”).

Problem 3

If we express velocities v in units of c (vacuum velocity of light) we call them β :=
v/c. In terms of β’s then the law for “adding” (denoted by a !) velocities in SR, that
we derived in the lecture, is

β2 := β ! β1 =
β+ β

‖
1 + γ−1β⊥

1

1+ β · β1

, (5)

where superscript ‖ and ⊥ refer to the components parallel and perpendicular to β, i.e.
if n := β/β then β

‖
1 := n(n · β1) and β⊥

1 := β1 − β
‖
1.
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1. Show the two alternative forms of this law:

β2 =
β+ β1

1+ β · β1

+
γ

1+ γ

β× (β× β1)

1+ β · β1

, (6a)

=
β+ γ−1β1

1+ β · β1

+
γ

1+ γ

β(β · β1)

1+ β · β1

. (6b)

2. Let γ, γ1, and γ2 denote the gamma-factors for the velocities β, β1 and β2,
respectively. Show that

γ2 = γγ1(1+ β · β1) . (7)

and deduce that
‖β ! β1‖ = ‖β1 ! β‖ < 1 . (8)

3. Let β and β1 be of equal magnitude and orthogonal to each other. Calculate the
magnitude of β2 and show that the angle α between β2 and β ′

2 := β1 !β obeys

cos(α) =
2γ

1+ γ2
(9)

Make a 2-dimensional vector-drawing showing the difference between β2 and
β ′
2. This gives you an impression of the non-commutativity of !.

Problem 4

We endow R4 with a “Minkowski metric”, that is, a non-degenerate bilinear symmetric
form η : R4 × R4 → R which in the standard basis {e0, e1, e2, e3} is of diagonal form
with entries of modulus 1:

η(ea, eb) = diag(1,−1,−1,−1) (10)

For simplicity we shall write v ·w := η(v,w) and v2 := v · v = η(v, v), just like for
the euclidean inner product. Given that, we also write ‖v‖η :=

!
|v2|. Note that this is

not a norm in the usual sense (why not?)

Two points p1,2 ∈ R4 are said to be timelike, spacelike, or lightlike separated if either
(p1 − p2)

2 > 0, < 0, or = 0, respectively. Correspondingly, a straight line is called
timelike, spacelike, or lightlike if any pair of two distinct points on it are timelike,
spacelike, or lightlike separated.

Now, let Gr(v) be a timelike straight line through r in the direction of v, whose param-
eter representation may be given by

x(λ) = r+ λv . (11)

Let further
Lp := {x ∈ R4 : ‖x− p‖η = 0} . (12)

be the lightcone at p where p ∕∈ Gr(V), with upper and lower components L±
p .
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1. Prove the following reversed Cauchy-Schwarz-Theorem: For any pair of vectors
v and w, where v is timelike (i.e. v2 > 0) and w is arbitrary, prove the following
inequality

(v ·w)2 ≥ v2w2 , (13)

with equality if and only if v and w are linearly dependent. Hint: Decompose
w = w‖ + w⊥, where w‖ is parallel and w⊥ orthogonal to v. w⊥ must be
spacelike and hence w2

⊥ ≤ 0, with equality if and only if w⊥ = 0.

2. Show that Gr(v) intersects Lp in precisely two points, q+ ∈ L+
p and q− ∈ L−

p .

3. Let q ∈ Gr(v) be any point between q+ and q− (and different from these two).
Show that

‖p− q‖2η = ‖q+ − q‖η · ‖q− q−‖η . (14)

Hint: The vectors (q+ − p) = (q− p) + (q+ − q) and (q− − p) = (q− p) +
(q− − q) are lightlike; hence

‖q− p‖2η = (q+ − q)2 + 2(q− p) · (q+ − q) , (15)

‖q− p‖2η = (q− − q)2 + 2(q− p) · (q− − q) . (16)

Use that q+−q and q−q− are parallel, which means that there exists a λ ∈ R+

so that q+ − q = λ(q− q−). Multiply (16) with λ and add that to (15).

4. Show that (p−q) is η-orthogonal to Gr(v), i.e. (p−q) ·v = 0, iff q is the mid-
point between q+ and q−. Hence, all events that are Einstein synchronous with
q relative to the inertial frame characterised by v are given by the 3-dimensional
hyperplane through q which is η-orthogonal to v (i.e. intersecting Gr(v) orthog-
onally).

5. Now consider two skew straight lines

Gr(v) :=
{
r+ λv : λ ∈ R

}
, (17a)

Gr ′(v
′) :=

{
r ′ + λ ′v ′ : λ ′ ∈ R

}
. (17b)
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“Skew” (german: “windschief”) means, that the lines do neither intersect nor
are they parallel. Show that there is exactly one pair of points (p, p ′) ∈ Gr(v)×
Gr ′(v

′) so that p ′ is simultaneous to p with respect to v and p is simultaneous
to p ′ with respect to v ′.

Remark: The statement (14) is called Robb’s Theorem [after the british geometer
Alfred Arthur Robb (1873-1936)]. Note how remarkable it is by comparing its state-
ment to the “right-triangle-altitude-theorem” (or “geometric-mean-theorem”; german:
“Höhensatz”) in euclidean geometry. Note in particular that in our case (14) holds for
any point q on the Gr(v)!
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