Exercises for the lecture on

Foundations and Applications of Special Relativity

von Domenico Giulini

Sheet 5

Problem 1

We denote by $L((\beta, D))$ the composition of a spatial rotation $D \in S O(3)$ and a boost with velocity β (in units of c):

$$
\begin{equation*}
\mathrm{L}(\beta \mathrm{D}):=\mathrm{B}(\boldsymbol{\beta}) \mathrm{R}(\mathrm{D}) . \tag{1}
\end{equation*}
$$

where

$$
\mathrm{B}(\boldsymbol{\beta}):=\left(\begin{array}{cc}
\gamma & \gamma \boldsymbol{\beta}^{\top} \tag{2}\\
\gamma \boldsymbol{\beta} & \mathrm{E}_{3}+(\gamma-1) \mathbf{n} \otimes \mathbf{n}^{\top}
\end{array}\right), \quad \mathrm{R}(\mathrm{D})=\left(\begin{array}{cc}
1 & \mathbf{0}^{\top} \\
\mathbf{0} & \mathrm{D}
\end{array}\right)
$$

1. Show

$$
\begin{equation*}
R(D) B(\boldsymbol{\beta})[R(D)]^{-1}=B(D \boldsymbol{\beta}) . \tag{3}
\end{equation*}
$$

2. Show

$$
\begin{equation*}
\mathrm{L}\left(\boldsymbol{\beta}_{1}, \mathrm{D}_{1}\right) \mathrm{L}\left(\boldsymbol{\beta}_{2}, \mathrm{D}_{2}\right)=\mathrm{L}\left(\beta_{1} \star \mathrm{D}_{1} \beta_{2}, \mathrm{~T}\left[\beta_{1}, \mathrm{D}_{1} \beta_{2}\right] \mathrm{D}_{1} \mathrm{D}_{2}\right) \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
[\mathrm{L}(\boldsymbol{\beta}, \mathrm{D})]^{-1}=\mathrm{L}\left(-\mathrm{D}^{-1} \beta, \mathrm{D}^{-1}\right) \tag{5}
\end{equation*}
$$

3. Compare this to the composition-law for the Galilei Transformations:

$$
\begin{equation*}
\mathrm{G}\left(\mathbf{v}_{1}, \mathrm{D}_{1}\right) \mathrm{G}\left(\mathbf{v}_{2}, \mathrm{D}_{2}\right)=\mathrm{G}\left(\mathbf{v}_{1}+\mathrm{D}_{1} \mathbf{v}_{2}, \mathrm{D}_{1} \mathrm{D}_{2}\right) . \tag{6}
\end{equation*}
$$

Answer the following questions for Lorentz and Galilei-transformations separately: a) Do pure rotations form a subgroup? b) Do pure boosts form a subgroup? c) Is the set of pure boosts invariant under conjugation.

Problem 2

Recall that the polar-decomposition of the product of two boosts is

$$
\begin{equation*}
B\left(\boldsymbol{\beta}_{1}\right) B\left(\boldsymbol{\beta}_{2}\right)=B\left(\boldsymbol{\beta}_{1} \star \boldsymbol{\beta}_{2}\right) R\left(T\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]\right) . \tag{7}
\end{equation*}
$$

- Show the following properties of equivariance:

$$
\begin{align*}
\left(\mathrm{D} \boldsymbol{\beta}_{1}\right) \star\left(\mathrm{D} \boldsymbol{\beta}_{2}\right) & =\mathrm{D}\left(\boldsymbol{\beta}_{1} \star \boldsymbol{\beta}_{2}\right), \tag{8a}\\
\mathrm{T}\left[\mathrm{D} \boldsymbol{\beta}_{1}, \mathrm{D} \boldsymbol{\beta}_{2}\right] & =\mathrm{DT}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right] \mathrm{D}^{-1} . \tag{8b}
\end{align*}
$$

Problem 3

In the lecture we showed that $\mathrm{T}\left[\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2}\right]$ is a rotation in the oriented plane spanned by $\left(\beta_{1}, \beta_{2}\right)$. It turns $\beta_{2} \star \beta_{1}$ into $\beta_{1} \star \beta_{2}$ and is thus in the negative direction (hence clockwise) in the given orientation. The angle θ of rotation can be expressed as a function of the moduli $\beta_{1,2}$ and the (oriented) angle φ between β_{1} and β_{2} as follows:

$$
\begin{equation*}
\cos \theta=1-\frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right) \sin ^{2} \varphi}{1+\gamma_{1} \gamma_{2}\left(1+\beta_{1} \beta_{2} \cos \varphi\right)} . \tag{9}
\end{equation*}
$$

1. Show that the explicit dependence on φ may be replaced by an explicit dependence on

$$
\begin{equation*}
\gamma:=\gamma_{1} \gamma_{2}\left(1+\beta_{1} \cdot \beta_{2}\right) \tag{10}
\end{equation*}
$$

so that $\cos \theta$ is now a function of γ, γ_{1}, and γ_{2}, which takes the following nice symmetric form

$$
\begin{equation*}
\cos \theta=\frac{\left(1+\gamma+\gamma_{1}+\gamma_{2}\right)^{2}}{(1+\gamma)\left(1+\gamma_{1}\right)\left(1+\gamma_{2}\right)}-1 . \tag{11}
\end{equation*}
$$

2. Consider the magnitudes $\beta_{1,2}$ as fixed so that $\cos (\theta)$ is a function of φ alone. This function assumes its maximal value 1 for $\varphi=0, \pi$. Hence there must be a minimum for $\cos \theta$ at some $\varphi=\varphi_{*}$ in between. Show that there is precisely one such minimum at which

$$
\begin{equation*}
\cos \varphi_{*}=-\sqrt{\frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)}{\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right)}} \tag{12}
\end{equation*}
$$

What is the implication of the negative sign?
3. Show that the Thomas angle θ_{*} at φ_{*} obeys

$$
\begin{equation*}
\cos \theta_{*}=1-2 \frac{\left(\gamma_{1}-1\right)\left(\gamma_{2}-1\right)}{\left(\gamma_{1}+1\right)\left(\gamma_{2}+1\right)}=-\cos \left(2 \varphi_{*}\right) \tag{13}
\end{equation*}
$$

Consider the special case $\beta_{1}=\beta_{2}=\beta$, hence $\gamma_{1}=\gamma_{2}=\gamma$. How large would β have to be in order for θ_{*} to exceed $\pi / 2$ (i.e. the right angle)?

