Exercises for the lecture on

Foundations and Applications of Special Relativity

von DOMENICO GIULINI

Sheet 5

Problem 1

We denote by $L((\beta, D))$ the composition of a spatial rotation $D \in SO(3)$ and a boost with velocity β (in units of c):

$$L(\beta D) := B(\beta)R(D).$$
⁽¹⁾

where

$$B(\boldsymbol{\beta}) := \begin{pmatrix} \boldsymbol{\gamma} & \boldsymbol{\gamma} \boldsymbol{\beta}^{\top} \\ \boldsymbol{\gamma} \boldsymbol{\beta} & E_3 + (\boldsymbol{\gamma} - 1) \mathbf{n} \otimes \mathbf{n}^{\top} \end{pmatrix}, \qquad R(D) = \begin{pmatrix} \mathbf{1} & \mathbf{0}^{\top} \\ \mathbf{0} & D \end{pmatrix}$$
(2)

1. Show

$$R(D)B(\beta)[R(D)]^{-1} = B(D\beta).$$
(3)

2. Show

$$L(\boldsymbol{\beta}_1, \boldsymbol{D}_1)L(\boldsymbol{\beta}_2, \boldsymbol{D}_2) = L(\boldsymbol{\beta}_1 \star \boldsymbol{D}_1 \boldsymbol{\beta}_2, \mathsf{T}[\boldsymbol{\beta}_1, \boldsymbol{D}_1 \boldsymbol{\beta}_2] \boldsymbol{D}_1 \boldsymbol{D}_2)$$
(4)

and

$$\left[L(\beta, D)\right]^{-1} = L(-D^{-1}\beta, D^{-1})$$
(5)

3. Compare this to the composition-law for the Galilei Transformations:

$$G(\mathbf{v}_1, D_1)G(\mathbf{v}_2, D_2) = G(\mathbf{v}_1 + D_1\mathbf{v}_2, D_1D_2).$$
(6)

Answer the following questions for Lorentz and Galilei-transformations separately: a) Do pure rotations form a subgroup? b) Do pure boosts form a subgroup? c) Is the set of pure boosts invariant under conjugation.

Problem 2

Recall that the polar-decomposition of the product of two boosts is

$$B(\boldsymbol{\beta}_1)B(\boldsymbol{\beta}_2) = B(\boldsymbol{\beta}_1 \star \boldsymbol{\beta}_2)R(T[\boldsymbol{\beta}_1, \boldsymbol{\beta}_2]).$$
(7)

• Show the following properties of equivariance:

 $(\mathbf{D}\boldsymbol{\beta}_1) \star (\mathbf{D}\boldsymbol{\beta}_2) = \mathbf{D}(\boldsymbol{\beta}_1 \star \boldsymbol{\beta}_2), \qquad (8a)$

$$\mathsf{T}[\mathsf{D}\boldsymbol{\beta}_1,\,\mathsf{D}\boldsymbol{\beta}_2] = \mathsf{D}\mathsf{T}[\boldsymbol{\beta}_1,\boldsymbol{\beta}_2]\mathsf{D}^{-1}\,. \tag{8b}$$

Problem 3

In the lecture we showed that $T[\beta_1, \beta_2]$ is a rotation in the oriented plane spanned by (β_1, β_2) . It turns $\beta_2 \star \beta_1$ into $\beta_1 \star \beta_2$ and is thus in the *negative* direction (hence clockwise) in the given orientation. The angle θ of rotation can be expressed as a function of the moduli $\beta_{1,2}$ and the (oriented) angle φ between β_1 and β_2 as follows:

$$\cos \theta = 1 - \frac{(\gamma_1 - 1)(\gamma_2 - 1) \sin^2 \varphi}{1 + \gamma_1 \gamma_2 (1 + \beta_1 \beta_2 \cos \varphi)}.$$
 (9)

1. Show that the explicit dependence on φ may be replaced by an explicit dependence on

$$\gamma := \gamma_1 \gamma_2 (1 + \beta_1 \cdot \beta_2) \tag{10}$$

so that $\cos \theta$ is now a function of γ , γ_1 , and γ_2 , which takes the following nice symmetric form

$$\cos \theta = \frac{(1 + \gamma + \gamma_1 + \gamma_2)^2}{(1 + \gamma)(1 + \gamma_1)(1 + \gamma_2)} - 1.$$
 (11)

2. Consider the magnitudes $\beta_{1,2}$ as fixed so that $\cos(\theta)$ is a function of φ alone. This function assumes its maximal value 1 for $\varphi = 0, \pi$. Hence there must be a minimum for $\cos \theta$ at some $\varphi = \varphi_*$ in between. Show that there is precisely one such minimum at which

$$\cos \varphi_* = -\sqrt{\frac{(\gamma_1 - 1)(\gamma_2 - 1)}{(\gamma_1 + 1)(\gamma_2 + 1)}}.$$
(12)

What is the implication of the negative sign?

3. Show that the Thomas angle θ_* at ϕ_* obeys

$$\cos \theta_* = 1 - 2 \frac{(\gamma_1 - 1)(\gamma_2 - 1)}{(\gamma_1 + 1)(\gamma_2 + 1)} = -\cos(2\varphi_*).$$
(13)

Consider the special case $\beta_1 = \beta_2 = \beta$, hence $\gamma_1 = \gamma_2 = \gamma$. How large would β have to be in order for θ_* to exceed $\pi/2$ (i.e. the right angle)?